- Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi
- Volume:7 Issue:5
- Tuzlu Suda Metan Hidrat Oluşum Koşullarının Tahmini için Regresyon Algoritmalarının Karşılaştırmalı ...
Tuzlu Suda Metan Hidrat Oluşum Koşullarının Tahmini için Regresyon Algoritmalarının Karşılaştırmalı Analizi
Authors : Sema Demirci Uzun, Aytuğ Onan, Vahide Bulut
Pages : 2065-2083
View : 18 | Download : 29
Publication Date : 2024-12-10
Article Type : Research Paper
Abstract :Petrol ve gaz borularında hidrat oluşumu, akış sürekliliği için en önemli faktörlerden biridir. Hidrat oluşumu, boruların tıkanmasına yol açabilmektedir, güvenlik ve ekonomik açıdan sorunlara neden olabilmektedir. Bu nedenle, hidrat oluşum ve bozunma koşullarının belirlenmesi ve analizi önemli bir araştırma problemidir. Bu amaçla, geleneksel kimyasal deneylere ve analizlere dayalı birçok çalışma gerçekleştirilmiştir. Doğal gaz hidrat oluşum ve bozunma mekanizması üzerindeki çevre koşullarının etkisinin karmaşık yapısı, yüksek başarımlı hidrat oluşum koşulu tahmin ve analiz yöntemleri geliştirmek için makine öğrenmesi algoritmalarının kullanımını uygun kılmaktadır. Bu çalışma kapsamında, doğrusal regresyon, karar ağacı, destek vektör makineleri, Gauss süreç regresyonu algoritmalarına dayalı on sekiz temel makine öğrenmesi algoritmasının etkinliği, tuzlu suda metan hidrat oluşum sıcaklığının basınca ve iyon konsantasyonlarına dayalı özniteliklere bağlı olarak belirlenmesi için değerlendirilmektedir. Deneysel analizlerde kullanılan regresyon modelleri incelendiğinde, Gauss süreç regresyonu tabanlı algoritmaların R-kare ölçütü bakımından, analizlerde kullanılan diğer yöntemlere kıyasla daha yüksek başarım elde ettiği görülmektedir. Karşılaştırmalı analizde dikkate alınan tüm konfigürasyonlar arasında en başarılı sonuçlar, hem ortalama mutlak hata (RMSE= 0.9517), hem ortalama kare hatası (MSE=0.9058) hem de R-kare ölçütü (R-kare=0.99) cinsinden rasyonel ikinci dereceden Gauss süreç regresyonu algoritması ile elde edilmektedir.Keywords : metan hidrat, oluşum koşulları, kemoinformatik, makine öğrenmesi