- Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi
- Volume:28 Issue:2
- Breast cancer diagnosis using deep belief networks on ROI images
Breast cancer diagnosis using deep belief networks on ROI images
Authors : Gökhan ALTAN
Pages : 286-291
View : 9 | Download : 8
Publication Date : 2022-04-30
Article Type : Research Paper
Abstract :Elle çıkarılan öznitelikler, görüntü işleme, tanıma ve bilgisayarlı görü için etkili yöntemlerdir. Ancak, veri boyutu ve görüntü çözünürlüklerindeki artış, özniteliklerin elde edilmesinde zorluklara sebep olmuştur. Kararsız, yönteme bağımlı ve hesaplama açısından yoğundurlar. Özellikle, görüntü veri kümelerindeki büyük veriler, öngörülemeyen uzun süreçler doğurur. Görüntü işleme için öznitelik çıkarma algoritmalarının bilgisayar destekli yöntemlere uyarlanması kesin bir ihtiyaçtır. Üretken temsili öğrenme algoritmaları, Derin Öğrenmenin avantajları ile son yıllarda ortaya çıkan yaklaşımlardır. Bu çalışmada, ROI görüntülerinde meme kanseri teşhisi için Derin İnanç Ağlarının insert ignore into journalissuearticles values(DBN); kullanılmasını önerdim. DBN modelleri, boyutun ROI görüntüleri üzerindeki etkisini değerlendirmek için farklı görüntü boyutları üzerinde tekrarlanmıştır. Önerilen DBN modeli doğruluk, özgüllük, duyarlılık ve kesinlik için sırasıyla %96.32, %96.68, %95.93 ve %96.40 performans oranlarına ulaşmıştır. Sonuç olarak, önerilen ayrıntılı temsili öğrenmeye sahip DBN, üretici yapıların avantajı ile meme kanseri ve sağlıklı dokuların mamogramlarda sınıflandırılması için verimli ve sağlam bir prosedürdür.Keywords : Derin Öğrenme, Temsili öğrenme, Derin İnanç ağları, meme kanseri, DDSM