- Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi
- Volume:16 Issue:1
- Ağırlıklandırılmış Evrişimsel Sinir Ağları Topluluğu ile Göğüs Radyografilerinden Kardiyomegali Tesp...
Ağırlıklandırılmış Evrişimsel Sinir Ağları Topluluğu ile Göğüs Radyografilerinden Kardiyomegali Tespiti
Authors : Enes Ayan
Pages : 178-188
Doi:10.29137/umagd.1367772
View : 48 | Download : 41
Publication Date : 2024-01-31
Article Type : Research Paper
Abstract :Kardiyomegali bir hastalık olmamasına karşın birçok kalp rahatsızlığının belirtisi olarak ortaya çıkabilmektedir. Bu belirtinin erken teşhis edilip altında yatan sebeplerin araştırılması hasta için hayati bir önem arz etmektedir. Kardiyomegali teşhisi için en sık kullanılan yöntemlerden biri göğüs radyografisidir. Derin öğrenme yöntemleri ile radyografik görüntülerin analizi son yıllarda oldukça popüler bir çalışma alanıdır. Özellikle evrişimsel sinir ağları medikal görüntü analizinde başarılı sonuçlar elde etmiştir. Bu çalışmada hekimlerin göğüs radyografilerini analiz ederken ikinci bir görüş alabilecekleri, göğüs radyografilerini normal ve kardiyomegali olmak üzere sınıflandıracak ağırlıklandırılmış evrişimsel sinir ağı (ESA) topluluğu önerilmiştir. Bu bağlamda kardiyomegali tespit etmesi için eğitilen on ESA modeli arasından en başarılı üç model ağırlıklandırılmış topluluk yöntemi için seçilmiştir. Seçilen modellerin ağırlıkları parçacık sürü optimizasyon algoritması kullanılarak belirlenmiştir. Elde edilen ağırlıklar kullanılarak yapılan testler sonucunda önerilen yöntem %89,09 doğruluk %89,09 duyarlılık, %89,30 kesinlik ve %89,08 F1 skor değerleri elde etmiştir.Keywords : Evrişimsel Sinir Ağları, Parçacık Sürü Optimizasyonu, Kardiyomegali, Derin Öğrenme