- Alphanumeric Journal
- Volume:7 Issue:1
- Using Machine Learning Algorithms For Forecasting Rate of Return Product In Reverse Logistics Proces...
Using Machine Learning Algorithms For Forecasting Rate of Return Product In Reverse Logistics Process
Authors : Ayşe Nur ADIGÜZEL TÜYLÜ, Ergün Eroğlu
Pages : 143-156
Doi:10.17093/alphanumeric.541307
View : 19 | Download : 10
Publication Date : 2019-06-30
Article Type : Research Paper
Abstract :Satış tahmini, stok planlama ve dağıtım gibi faaliyetlerde yapılan hatalar nedeni ile birçok tekstil ürünü tersine lojistik ağına girmektedir. Kaynak kullanımını ve maliyeti en başta azaltmak için doğru sayıda üretimin yanı sıra bu ürünlerin doğru şubelere doğru sayıda, renkte, bedende ve modelde gönderilmesi, nakliyesinin ve stok planlamasının doğru bir şekilde yapılması gerekmektedir. Çok parametreli ve çok değişkenli problemlerde matematiksel model kurmanın zorluğu nedeniyle istatistiksel yöntemler, yapay zeka yöntemleri ve makine öğrenme yöntemleri kullanılmaktadır. Genel olarak tüm bu faaliyetler zaman serisine dayalı talep tahminleri baz alınarak yapılır, fakat moda ve tüketicilerin çok çabuk değişen istekleri nedeniyle talep tahminleri ile gerçekleşen talepler arasında önemli farklılıklar doğmaktadır. Son dönemde yapılan çalışmalar gösteriyor ki bu şekilde karmaşık yapılı büyük veri setlerinde yapay zeka ve makine öğrenme yöntemleri diğer tahmin yöntemlerine göre doğruluğu daha yüksek sonuçlar vermektedir. Bu çalışmada diğer çalışmalardan faklı olarak Tersine Lojistikte ürün iade oranlarının ilk defa Makine Öğrenme yöntemleri ile tahmin edilmesi yapılmıştır. Bu kapsamda müşterilerin tercihleri ile birlikte satışa çıkan ürünlerin iadeleri ve nedenleri üzerinde yoğunlaşılıp iadelerin daha doğru bir şekilde tahmin edilmesi amaçlanmıştır. Elde edilen analizler sonucunda şubelere doğru beden, renk ve modelde ürünlerin gitmesi; gereksiz üretim, nakliye ve depolama faaliyetlerinden kaçınılması; maliyetin, kaynak kullanımının ve çevre kirliliğinin azaltılması; kaçınılamayan nakliye ve depolama maliyetlerinin tahmin edilmesi konularında daha doğru bir planlama yapılması sağlanmıştır. Makine Öğrenme tekniklerinden M5P algoritması ile en iyi tahmin performansına insert ignore into journalissuearticles values(% 82,35 korelasyon katsayısı ve en düşük hata ölçütleri); ulaşmıştır.Keywords : Tekstil, Tersine Lojistik, Ürün İade Oran Tahmini, Makine Öğrenme, Tekstile