- Black Sea Journal of Engineering and Science
- Volume:8 Issue:1
- Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model il...
Doğal Gaz Fiyatının Elman Sinir Ağları ve Yusufçuk Optimizasyon Algoritmasına Dayalı Hibrit Model ile Tahmini
Authors : Seçkin Karasu
Pages : 102-114
Doi:10.34248/bsengineering.1502427
View : 104 | Download : 134
Publication Date : 2025-01-15
Article Type : Research Paper
Abstract :Dünya nüfusunun artışı ile çeşitli fosil ve yenilenebilir enerji kaynaklarının kullanımı giderek artmaktadır. Doğal gaz, fosil enerji kaynakları arasında yer alan kömür ve petrolle karşılaştırıldığında, daha düşük karbondioksit emisyonu, yüksek verimlilik, kolay erişim ve düşük depolama maliyeti gibi özellikleri nedeniyle bireysel ve kurumsal düzeyde kullanım alanı bulmuştur. Doğal gaz fiyatı ekonomik açıdan önemli olduğu kadar stratejik öneme de sahiptir. Özellikle doğal gaz fiyatının gelecekte alacağı değerin tahmini, enerji üreticilerine ve tüketicilerine, yatırımcılara ve hükümetlere stratejik kararlar alırken yol gösterici olmaktadır. Bu çalışmada, Elman Sinir Ağları (ENN) ve Yusufçuk Optimizasyon Algoritması (DOA) yaklaşımları kullanılarak bir adım sonraki doğal gaz kapanış fiyatının tahmini yapılmıştır. Çalışma 01,06,2009-31,05,2024 tarihleri arasında 3986 adet kapanış fiyatı içeren veri seti kullanılarak yapılmıştır. Bir adım sonraki kapanış fiyatının tahmini için yapay zekâ yaklaşımlarından ENN yöntemi kullanılmıştır. Geri beslemeli sinir ağları arasında yer alan ENN, geçmiş verileri dikkate alarak gelecekteki değerleri tahmin etme yeteneğine sahiptir ve özellikle zaman serisi tahmininde kullanılmaktadır. Model eğitim aşamasında yusufçukların avlanma ve göç etme davranışlarından ilham alınarak geliştirilmiş bir sezgisel optimizasyon algoritması olan DOA yöntemiyle ENN’nin ağırlık ve bias değerleri bulunmuştur. Modelin değerlendirilme aşamasında veri setinin eğitim, doğrulama ve test setlerine bölünmesiyle modelin genelleme kapasitesi daha güvenilir bir şekilde ölçülmektedir. Model başarımı, çeşitli istatistiksel hata kriterleri kullanılarak değerlendirilmiş ve elde edilen sonuçlar tatminkâr bulunmuştur. Yapay zekâ yaklaşımlarının kullanımı, enerji piyasaları gibi dinamik ve karmaşık sistemlerde tahmin doğruluğunu artırmak için kritik önem taşımaktadır. ENN ve DOA’nın birleşimi, bu tür problemler için güçlü ve esnek bir çözüm sunmaktadır. Bu çalışma, doğal gaz fiyatlarının tahmininde yapay zekâ yöntemlerinin etkinliğini göstermekte ve bu yaklaşımların pratik uygulamalarda kullanılabilirliğini ortaya koymaktadır.Keywords : Doğal gaz tahmini, Elman sinir ağları, Yusufçuk optimizasyon algoritması, Zaman serisi, Tahmin