- Hacettepe Journal of Mathematics and Statistics
- Volume:51 Issue:4
- Two-way ANOVA by using Cholesky decomposition and graphical representation
Two-way ANOVA by using Cholesky decomposition and graphical representation
Authors : Mustafa TEKİN, Haydar EKELİK
Pages : 1174-1188
Doi:10.15672/hujms.955559
View : 16 | Download : 5
Publication Date : 2022-08-01
Article Type : Research Paper
Abstract :In general, the coefficient estimates of linear models are carried out using the ordinary least squares insert ignore into journalissuearticles values(OLS); method. Since the analysis of variance is also a linear model, the coefficients can be estimated using the least-squares method. In this study, the coefficient estimates in the two-way analysis of variance were performed by using the Cholesky decomposition. The purpose of using the Cholesky decomposition in finding coefficient estimates make variables used in model being orthogonal such that important variables can be easily identified. The sum of squares in two-way analysis of variance insert ignore into journalissuearticles values(row, column, interaction); were also found by using the coefficient estimates obtained as a result of the Cholesky decomposition. Thus, important variables that affect the sum of squares can be determined more easily because the Cholesky decomposition makes the variables in the model orthogonal. By representing the sum of squares with vectors, how the prediction vector in two-way ANOVA model was created was shown. It was mentioned how the Cholesky decomposition affected the sum of squares. This method was explained in detail on a sample data and shown geometrically.Keywords : Cholesky decomposition, aalysis of variance and covariance ANOVA, , linear equations