- International Journal of Automotive Science and Technology
- Volume:6 Issue:1
- Experimental Investigation of Frictional Power Apportionment of Moving Parts in a Hydrogen Fueled Mu...
Experimental Investigation of Frictional Power Apportionment of Moving Parts in a Hydrogen Fueled Multi-Cylinder Spark Ignition Engine
Authors : Akshey MARWAHA, K. A. SUBRAMANİAN
Pages : 39-48
Doi:10.30939/ijastech..999354
View : 8 | Download : 6
Publication Date : 2022-03-31
Article Type : Research Paper
Abstract :This study deals with the frictional power of each moving part in hydrogen fueled multi-cylinder spark ignition engine. The moving parts such as piston, rings, bearings, cam, and roller follower are considered for this study. The engine was run at a constant speed of 1500 rpm with different loads. The indicated power of the engine is calculated using the in-cylinder pressure data, and the brake power is measured with respect to different loads. The frictional power of each moving component is calcu-lated using the models available in the literature. The constants of the models are calibrated for the engine with the input of the measured experimental data. The frictional power of the components increases with an increase in the engine’s load. The friction between the piston and the ring with the liner is the highest among other components’ friction due to mainly gas pressure insert ignore into journalissuearticles values(in the piston rings); acting on the piston being the highest. The percentages of frictional power of each moving component at the power output of 15.1 kW are 30.8% insert ignore into journalissuearticles values(friction in piston rings due to gas pressure);, 18.4% insert ignore into journalissuearticles values(piston skirt);, 13.4 % insert ignore into journalissuearticles values(bearings);, 8.5 % insert ignore into journalissuearticles values(cam);, 6.9 % insert ignore into journalissuearticles values(piston ring tension); at applied engine load of 15.1 kW. This study results could be useful to find avenues for reducing the friction of the moving parts to enhance the fuel economy and endurance life of the engines.Keywords : Friction, Hydrogen, Load, Lubricating oil, Speed