- JENAS Journal of Environmental and Natural Studies
- Volume:4 Issue:2
- Forecasting Precipitation by Machine Learning Algorithms to Adapt Climate Change
Forecasting Precipitation by Machine Learning Algorithms to Adapt Climate Change
Authors : Erman ÜLKER
Pages : 109-118
Doi:10.53472/jenas.1150975
View : 12 | Download : 7
Publication Date : 2022-09-05
Article Type : Research Paper
Abstract :Tarih boyunca su, canlılar ve uygarlıklar için yerleşim yeri seçiminde en önemli etken olmuştur. Gerçekten de su havzalarına yakın olmanın daha az ulaşım ihtiyacı, zengin mahsul, su dağıtımında enerji tasarrufu gibi birçok avantajı olduğu açıktır. Ancak sel, erozyon gibi dezavantajları da göz önünde bulundurulması gerektiği yaşanan doğal felaketlerle tarih boyunca hissedilmiştir. Bu nedenle, insanoğlu için herhangi bir doğal afetten önce gerekli önlemlerin alınması için yağışların doğru tahmin edilmesi önemli bir amaç olmuştur. Bu çalışmada, Python`da makine öğrenmesi algoritmaları uygulanarak yağış tahmini incelenmiştir. Bu çalışmada kullanılan veriler Türkiye`nin iki ilinden elde edilmiştir. Sonuçlar, Rassal Orman regresyon algoritmasının bu çalışmada kullanılan diğer regresyon modellerinden daha iyi performans gösterdiğini göstermektedir. Ayrıca gelecek 4 yılın öngörüsü, daha fazla yağış beklenmesi ve yağışların yeşil alanlara yönlendirilmesi ile toprakta depolanması veya kurak mevsimler için hasat edilmesi gerektiğini gösterilmektedir. İklim değişikliği dramatik bir şekilde meydana gelip kuru ve yağışlı mevsimlerin süresini değiştirirken, yağış miktarının tahmini, değişime daha yumuşak bir şekilde uyum sağlamamıza yardımcı olacaktır.Keywords : Yağış, İklim Değişikliği, Tahmin, Python, Regresyon