- Communications Faculty of Sciences University Ankara Series A1 Mathematics and Statistics
- Volume:59 Issue:2
- A SIMULATION STUDY ON TESTS FOR ONE-WAY ANOVA UNDER THE UNEQUAL VARIANCE ASSUMPTION
A SIMULATION STUDY ON TESTS FOR ONE-WAY ANOVA UNDER THE UNEQUAL VARIANCE ASSUMPTION
Authors : Esra YİĞİT, Fikri GÖKPINAR
Pages : 15-34
Doi:10.1501/Commua1_0000000660
View : 11 | Download : 8
Publication Date : 2010-08-01
Article Type : Research Paper
Abstract :The classical F-test to compare several population means depends on the assumption of homogeneity of variance of the population and the normality. When these assumptions especially the equality of variance is dropped, the classical F-test fails to reject the null hypothesis even if the data actually provide strong evidence for it. This can be considered a serious problem in some applications, especially when the sample size is not large. To deal with this problem, a number of tests are available in the literature. In this study, the Brown-Forsythe, Weerahandiís Generalized F, Parametric Bootstrap, Scott-Smith, One-Stage, One-Stage Range, Welch and Xu-Wangís Generalized F-tests are introduced and a simulation study is performed to compare these tests according to type-1 errors and powers in different combinations of parameters and various sample sizes.Keywords : Brown Forsythe test, Generalized F test, Parametric Bootstrap test