- Avrupa Bilim ve Teknoloji Dergisi
- Issue:26 - Ejosat Special Issue:2021 (HORA) Special Issue
- Object Detection for Safe Working Environments using YOLOv4 Deep Learning Model
Object Detection for Safe Working Environments using YOLOv4 Deep Learning Model
Authors : Oğuzhan ÖNAL, Emre DANDIL
Pages : 343-351
Doi:10.31590/ejosat.951733
View : 17 | Download : 10
Publication Date : 2021-07-31
Article Type : Conference Paper
Abstract :İşyerlerinde çalışanların sağlığı ve güvenliği üretim kavramı ortaya çıktığından bu yana önemini korumaktadır. Bilgisayarlı görü ve derin öğrenme konusunda son yıllarda kaydedilen gelişmeler, çalışma ortamlarında gözetim videolarından iş güvenliğinin sağlanmasında ikincil bir araç olarak kullanılmaya başlamıştır. Böylece çalışma ortamlarında insandan kaynaklı hataların minumuma indirilerek önemli bir başarım elde edilmesi sağlanmaktadır. Bu çalışmada, endüstriyel üretim alanında faaliyet gösteren tesislerin çalışma ortamlarında, videolardan kişisel koruyucu donanımların kullanımın denetlenmesi ve güvensiz hareketlerin tespiti için YOLOv4 derin öğrenme modeli tabanlı bir yöntem önerilmektedir. Çalışmada, öncelikle farklı çalışma ortamlarından toplanan videolar ile bir veriseti oluşturulmuştur. Çalışmada daha sonra, hazırlanan video veriseti üzerinde, sanayi bölgelerinde faaliyet gösteren fabrikalarda işçilerin kullandığı baret, yelek, maske, eldiven, gözlük gibi kişisel koruyucu ekipmanların tanınması ve uygun donanımları doğru kullanıp kullanmadıkları YOLOv4 altyapısı kullanılarak tespit edilmiştir. Çalışma kapsamında yürütülen deneysel çalışmalarda, YOLOv4 ağında yapılan eğitim sonucunda mean average precision (mAP) değeri %91.18 olarak başarılmıştır. Ayrıca, diğer ölçüm metrikleri kesinlik, duyarlılık, F1-skoru, kesiştirilmiş bölgeler (IoU) ve ortalama kayıp için sırasıyla 0.89, 0.91, 0.90, 70.35 ve 1.1147 sonuçları elde edilmiştir. Sonuç olarak, önerilen çalışmada, fabrikalarda tesis edilmiş kameralardan gelen videoların anlık olarak denetlenmesi ve sahnenin anlamlandırılması sağlanarak, güvenli çalışma ortamlarının kontrolü başarılı bir şekilde sağlanmıştır.Keywords : Nesne tanıma, Güvenli iş ortamı, Kişisel koruyucu ekipmanlar, Derin öğrenme, YOLOv4