- Avrupa Bilim ve Teknoloji Dergisi
- Issue:26 - Ejosat Special Issue:2021 (HORA) Special Issue
- Bi-Attempted Based Optimization Algorithm For Numerical Optimization Problems
Bi-Attempted Based Optimization Algorithm For Numerical Optimization Problems
Authors : Mehtap KÖSE ULUKÖK
Pages : 466-471
Doi:10.31590/ejosat.953349
View : 12 | Download : 6
Publication Date : 2021-07-31
Article Type : Conference Paper
Abstract :Sayısal iyileştirme, bilgisayar biliminde iyi bilinen sorunlardan biridir. Gün geçtikçe birçok araştırmacı tarafından yeni yöntemler geliştirilmektedir. Son zamanlarda iyileştirme yapmak, mühendislik, tıp, yönetim ve diğerleri gibi birçok disiplin için önemli bir zorunluluk haline geldi. Çoğu durumda, iyileştirme problemleri, gerçek zamanlı uygulamalar için hızlı ve verimli algoritmalar gerektirebilir. Bu yazıda, hem tek-modelli hem de çoklu-modelli kıyaslama fonksiyonlarının iyileştirilmesi için basit, hızlı ve uygulanabilir bir algoritma sunulmuştur. Popülasyon tabanlı Bi-Attempted Base Optimizasyon Algoritması (ABaOA), iki sabit adım kaydırma parametresi ve iki mutasyon operatörü ile bir çözüm alanını arayan stokastik bir arama yöntemidir. Önerilen algoritma, temel aritmetik işlemleri kullanan Base Optimizasyon Algoritmasından (BaOA) türetilmiştir. ABaOA'nın performansı, iyi bilinen yirmi kıyaslama fonksiyonu üzerinde test edilmiş ve sonuçlar, iyi bilinen yedi stokastik optimizasyon algoritması ile istatistiksel olarak karşılaştırılmıştır. ABaOA'dan elde edilen sonuçlar üzerinde üç farklı istatistiksel analiz yapılmıştır. Sign ve Wilcoxon testleri kullanılarak ortalama değerlerle iki parametrik olmayan istatistiksel karşılaştırma yapılmıştır. Önerilen algoritmanın parametrik olmayan istatistiksel çoklu karşılaştırması Friedman testi kullanılarak gerçekleştirilmiştir. Bu algoritmaların tekrarlanan ölçümleri arasındaki farklılıkların parametrik olmayan Friedman testi 67.337'lik bir Ki-kare değeri istatistiksel olarak anlamlı bulundu (p <0.05). ABaOA'nın diğer algoritmalar arasındaki farkını istatistiksel olarak analiz etmek için Wilcoxon parametrik olmayan ikili karşılaştırma testi uygulanmıştır. Test, sunulan algoritmanın diğer algoritmalardan istatistiksel olarak anlamlı olduğunu ve p <0,05 anlamlılık düzeyine sahip olduğunu göstermektedir. Deneysel sonuçlar ayrıca ABaOA'nın karşılaştırılan stokastik iyileştirme algoritmalarından açıkça üstün olduğunu göstermektedir.Keywords : Sayısal Zeka, Evrimsel Hesaplama, İyileştirme Yöntemleri, Sayısal İyileştirme