- Avrupa Bilim ve Teknoloji Dergisi
- Issue:26 - Ejosat Special Issue:2021 (HORA) Special Issue
- A Big Data Analysis Framework for Localization in Cloud based Sensor and Robot Networks
A Big Data Analysis Framework for Localization in Cloud based Sensor and Robot Networks
Authors : Zuleyha AKUSTA DAGDEVIREN, Orhan DAĞDEVİREN
Pages : 401-406
Doi:10.31590/ejosat.960401
View : 13 | Download : 8
Publication Date : 2021-07-31
Article Type : Conference Paper
Abstract :Nesnelerin İnterneti (IoT), İnternet üzerinden bağlı milyarlarca sensör cihazdan oluşturulmaktadır. Kablosuz sensör ağları (KSA’lar), ortamdan büyük ölçekli veri sağlamak için IoT'nin çok önemli iletişim teknolojileridir. Toplanan veriler katlanarak büyüdüğü için bulut tabanlı büyük veri analizi tekniklerinin tasarımı çok önemlidir. Sensör ağlarda konumlandırma, referans düğümlerin koordinatlarına göre bir düğümün konumunu bulmaktır. Hedef takibi ve askeri gözetim gibi birçok uygulamada konumlandırmanın sağlanması gerekmektedir. Dağıtım aşamasında düğüm konumlarının manuel olarak girilmesi, özellikle büyük ölçekli sensör ağları için geçerli değildir. Ayrıca, her sensör düğümü için bir GPS alıcısı entegre etmek çok maliyetli bir çözümdür ve büyük ölçekli ağlar için uygun olmayabilir. Sensör düğümleri çoğunlukla pille çalıştığından, enerji açısından verimli bir konumlandırma yönteminin tasarımı, ağın ömrünü uzatmak için oldukça önemlidir. Mevcut konumlandurma teknikleri, yüksek enerji tüketimine neden olan birçok mesaj iletimini gerektirebilir. Bu sorunu çözmek için, bu makalede enerji açısından verimli bir konumlandırma çerçevesi önermekteyiz. Bir mobil robot, algılama alanı boyunca hareket ettirilmekte ve bu düğümleri yerelleştirmek için sensör düğümleriyle iletişim kurmaktadır. Önceki yaklaşımlardan farklı olarak, önerilen yaklaşımımız düğüm başına yalnızca 3 mesaj gerektirmektedir. Ayrıca, konumlandırma için gereken işlem çoğu sıradan düğümler tarafından gerçekleştirilmemektedir. Önerdiğimiz yaklaşımı ns2 benzetim ortamında simüle etmekteyiz. Önerdiğimiz yaklaşımın konumlandırma kalitesini ve enerji tüketimini rakipleriyle karşılaştırmaktayız. Ayrıca, konumlandırma kalitesini ve enerji tüketimini değişen düğüm sayılarına ve derecelerine göre ölçmekteyiz. Kapsamlı simülasyon sonuçlarından, önerdiğimiz yaklaşımın konumladırma kalitesinin rakiplerinden önemli ölçüde daha iyi olduğunu elde etmekteyiz. Ayrıca, önerdiğimiz algoritmanın enerji tüketimi düğüm başına sadece 0,06 J'dir ve bu sonuç dağıtık algoritmadan çok daha iyidir. Sonuç olarak, bu makalede önerilen çerçevemiz, enerji verimli konumlandırma gerektiren IoT ve büyük veri uygulamaları için önemli bir adaydır.Keywords : Nesnelerin İnterneti, Büyük Veri, Bulut Bilişim, Konumlandırma, Robotlar