- Avrupa Bilim ve Teknoloji Dergisi
- Issue:35
- Missing Data Imputation for Solar Radiatıon by Deep Neural Network
Missing Data Imputation for Solar Radiatıon by Deep Neural Network
Authors : Eyyup Ensar BAŞAKIN, Mehmet ÖZGER
Pages : 548-555
Doi:10.31590/ejosat.1085022
View : 15 | Download : 5
Publication Date : 2022-05-07
Article Type : Research Paper
Abstract :Gözlemlerin kalitesi doğa bilimlerinde önemli bir konudur. Tatmin edici tahminleri gerçekleştirmek için doğru ve eksiksiz veriler gereklidir. Bozuk veya yanlış kalibre edilmiş bir cihaz ve ölçümlerin okunmasındaki hata gibi ölçümlerin kalitesini bozan çeşitli faktörler vardır. Bu çalışmada, güneş radyasyonu verilerinin ölçümünde kayıp değerlerin tamamlanması amaçlanmaktadır. Eksik verileri işlemek için Derin Sinir Ağı (DNN) yöntemi kullanılmış ve ilgili literatürde en sık benimsenen veri atama yöntemlerinden biri olan Ortalama Atama (MI) gibi klasik yaklaşımlarla, Doğrusal İnterpolasyon (LI) ve Spline İnterpolasyon ile kıyaslama yapılmıştır. Genel sonuçlar, DNN yönteminin, klasik yöntemlere kıyasla çeşitli performans ölçütlerine göre daha fazla doğruluk sağlayarak eksik veri tamamlama açısından benzerlerinden daha iyi performans gösterdiğini vurguladı. Önerilen yaklaşımın, ilgili literatürde var olan önemli boşluğu doldurarak ilgili araştırmacılara önemli bir genel bakış sağlamanın yanı sıra bilgi birikimine değerli katkılarda bulunabileceğine inanılmaktadır.Keywords : Makina öğrenmesi, Derin Öğrenme, Eksik Veri Tamamlama, Solar Radyasyon