- PressAcademia Procedia
- Volume:12 Issue:1
- MAKİNE ÖĞRENMESİ ALGORİTMALARININ SINIFLAMA PROBLEMLERİ ÜZERİNDEN KARŞILAŞTIRILMASI: SATIŞ TAHMİNİ...
MAKİNE ÖĞRENMESİ ALGORİTMALARININ SINIFLAMA PROBLEMLERİ ÜZERİNDEN KARŞILAŞTIRILMASI: SATIŞ TAHMİNİ
Authors : Gizem DILKI
Pages : 82-83
Doi:10.17261/Pressacademia.2020.1357
View : 19 | Download : 8
Publication Date : 2020-12-31
Article Type : Research Paper
Abstract :Amaç- Makine öğrenmesi, satış tahmini alanında sıkça kullanılmaktadır. İşletmeler, yeni bir ürünü piyasaya sunmadan önce geçmiş verilerinden birtakım analizler yaparak geleceğe yönelik kestirimler yapabilmektedir. Böylelikle, optimal sayıda ürün üreterek hem hammadde ve işgücü maliyetini hem de depolama, lojistik gibi maliyetlerin ortaya çıkarabileceği zararı en aza indirmeyi amaçlarlar. Ürünün hedef kitlesini belirleyerek bu doğrultuda satış stratejileri geliştirme imkânı bulurlar. Yöntem- Bu amaçla, çalışmamızda, makine öğrenmesi problemlerinden sınıflandırma problemleri ele alınmıştır. Satılması hedeflenen ürün ile aynı özelliklere sahip, daha önce piyasaya sunulmuş ürün verileri toplanmış, “ürün satıldı” ve “ürün satılmadı” şeklinde ikili sınıflandırma çalışması yapılmıştır. Denetimli öğrenme algoritmalarından k En Yakın Komşu, Naive Bayes ve Doğrusal Destek Vektör Makineleri kullanılan çalışmada, veri seti öğrenme seti ve test seti olarak bölünmüştür. Bulgular - Çalışma sonucu olarak, 0,71 doğruluk ile k En Yakın Komşu algoritması en yüksek doğruluğu sağlamıştır. Sonuç- Satış tahmini çalışmalarında makine öğrenmesi algoritmalarından k en yakın komşu algoritması görece daha iyi sonuçlar vermektedir.Keywords : Makine öğrenmesi, k en yakın komşu, naive bayes, doğrusal destek vektör makineleri, satış tahmini