- Bilişim Teknolojileri Dergisi
- Volume:13 Issue:3
- Mass Apprasial With A Machine Learning Algorithm: Random Forest Regression
Mass Apprasial With A Machine Learning Algorithm: Random Forest Regression
Authors : Sibel CANAZ SEVGEN, Yeşim ALİEFENDİOĞLU
Pages : 301-311
Doi:10.17671/gazibtd.555784
View : 14 | Download : 7
Publication Date : 2020-07-31
Article Type : Research Paper
Abstract :Hızla gelişen teknoloji ve bilimde bulunan yenilikler ile birçok alanda geleneksel yöntemlerin yerini makine öğrenme diye anılan modern yöntemleri almıştır. Bu alanlardan biri ise gayrimenkul değerleme alanıdır. Gayrimenkuller tek başına değerlemesi yapılabileceği gibi kitlesel olarak ta birçok gayrimenkulün bir arada değerlemesinin yapılması mümkündür. Bu çalışmada, popüler bir makine öğrenme tekniği olan Random Forest (Rasgele Orman) Regresyonu yöntemi seçilerek gayrimenkullerin kitlesel değerlemesi yapılmış ve sonuçların gerçek değere yakınlığı incelenmiştir. Bu amaçla, Ankara İli Yenimahalle İlçesinde 189 adet apartman dairesine ait değer ve bu gayrimenkullere ait 13 adet değişken verisi toplanmıştır. Bu verinin, %75’i eğitim verisi ve % 25’i ise test verisi olarak kullanılmıştır. Elde edilen sonuçlara göre, tahmin edilen değer ile olması beklenilen değer arasında en az 600 TL, en fazla 60.000 TL ve ortalama 25.000 TL fark gözlemlenmiştir. Bu sonuçlara göre rasgele orman regresyonunun kitlesel değerlemede başarılı olduğu, geleneksel yöntemlerle gayrimenkul değerlemek yerine rasgele orman regresyonu gibi farklı makine öğrenme yöntemleriyle değerleme yapılmasının zaman ve insan gücü tasarrufu açısından pozitif etkilerinin olacağı ortaya konmuştur.Keywords : Makine Öğrenme, Rasgele Orman Regresyonu, Gayrimenkul Değerleme, Kitlesel Değerleme