- Bilişim Teknolojileri Dergisi
- Volume:14 Issue:4
- IoT Güvenliği İçin Kullanılan Makine Öğrenimi ve Derin Öğrenme Modelleri Üzerine Bir Derleme...
IoT Güvenliği İçin Kullanılan Makine Öğrenimi ve Derin Öğrenme Modelleri Üzerine Bir Derleme
Authors : Hami SATILMIŞ, Sedat AKLEYLEK
Pages : 457-481
View : 15 | Download : 8
Publication Date : 2021-10-31
Article Type : Review Paper
Abstract :Nesnelerin internetini (internet of things - IoT) oluşturan cihazlar ve bu cihazları birbirine bağlayan ağlar hızlı bir şekilde yaygınlaşmaktadır ve evrim geçirmektedir. Buna paralel olarak, IoT cihazlarına ve ağlarına yönelik saldırılar da hız kesmeden artmaya devam etmektedir. Bu derleme çalışmasında, genel olarak IoT ağlarındaki anormallik tabanlı saldırıları tespit etmek ve azaltmak için önerilen, makine öğrenimi ve derin öğrenme modellerinden oluşan güncel yaklaşımlar özetlenmiştir. Önerilen yaklaşımlar hakkında kısa bilgiler verilmektedir ve bu yaklaşımların avantajlarından ve dezavantajlarından bahsedilmektedir. Bu çalışmanın ana hedefi olarak, önerilen yaklaşımlarda kullanılan makine öğrenimi ve derin öğrenme modelleri ile ilgili, üç araştırma sorusunun yanıtı aranmaktadır. Bu araştırma sorularından birincisi, “IoT güvenliğinde kullanılan makine öğrenimi ve derin öğrenme modelleri, hangi metriklerle değerlendirilmektedir? “, ikincisi, “IoT güvenliği açısından, makine öğrenimi ve derin öğrenme modellerinde hangi veri kümeleri kullanılmaktadır? “ ve üçüncüsü ise, “IoT güvenliğinde hangi makine öğrenimi ve derin öğrenme modelleri kullanılmaktadır ve bunların uygulama alanları nelerdir? “. Bu çalışmada son olarak, incelenen çalışmalardaki eksiklikler tespit edilmektedir. Böylece, IoT güvenliği ile ilgili gelecekteki çalışmalar için bir bakış açısı sağlanmaktadırKeywords : derin öğrenme, IoT güvenliği, makine öğrenimi