- Bilişim Teknolojileri Dergisi
- Volume:15 Issue:3
- Emerging Trends in Classification with Imbalanced Datasets: A Bibliometric Analysis of Progression
Emerging Trends in Classification with Imbalanced Datasets: A Bibliometric Analysis of Progression
Authors : Abdullah MARAŞ, Çiğdem EROL
Pages : 275-288
Doi:10.17671/gazibtd.1019015
View : 7 | Download : 9
Publication Date : 2022-07-31
Article Type : Research Paper
Abstract :Dengesiz veri kümeleri, makine öğrenimi alanında hedef değişkenin oldukça çarpık dağılımı olarak tanımlanmaktadır. Dengesiz veri kümeleri, makine öğrenimi modelleri üzerindeki olumsuz etkilerinden dolayı son on yılda araştırmacıların dikkatini büyük ölçüde çekmiştir. Araştırmacılar dengesiz veri kümeleri sorunlarına çeşitli çözümler geliştirip literatürde paylaşmaktadır. Artan makale sayısı literatürü takip etmeyi zorlaştırmaktadır. Derleme makaleleri bu sorunun çözümüne katkıda bulunur. Bu çalışmada, dengesiz veri kümeleriyle sınıflandırmadaki çözüm önerilerini bulmak için bibliyometrik bir analiz yapılması amaçlanmaktadır. Bibliyometrik analiz, veri tabanlarından istatistik çıkarmaya dayalı nicel bir tekniktir. Bu çalışma, dengesiz veri kümeleri problemini ele alan ilk bibliyometrik analizi olma niteliğindedir. Bu çalışmada, Scopus veri tabanından, dengesiz veri kümeleriyle ilgili veri, R Bibliometrix package version 3.1.4 ile elde edilerek son çalışmalar ve yeni yaklaşımlar özetlendi. Seçilen anahtar kelimeler ile 1957-2021 yılları arasında 16255 yayına ilişkin veriler toplandı. Bu koleksiyon temel olarak 8871 makale, 6987 konferans bildirisi ve 175 derlemeden oluşmaktadır ve belge başına atıf sayısı yılda ortalama 1,66’dır. En çok atıf yapılan ülkeler arasında 106139 toplam atıf ile Amerika Birleşik Devletleri'ni, 13839 atıf ile Çin ve 9524 atıf ile Almanya takip etmektedir.Keywords : dengesiz öğrenim, sınıflandırma, örnekleme yöntemleri, maliyet duyarlı çözüm, değerlendirme metrikleri, bibliyometrik