- Adıyaman Üniversitesi Mühendislik Bilimleri Dergisi
- Volume:8 Issue:14
- UNSUPERVISED MACHINE LEARNING ALGORITHMS TO FIND 3-KCP SOLUTION: MODULARITY, CLIQUE PERCOLATION, SPE...
UNSUPERVISED MACHINE LEARNING ALGORITHMS TO FIND 3-KCP SOLUTION: MODULARITY, CLIQUE PERCOLATION, SPECTRAL, CENTRALITY, AND HIERARCHICAL CLUSTERING
Authors : Serkan GÜLDAL
Pages : 169-178
View : 11 | Download : 7
Publication Date : 2021-06-30
Article Type : Research Paper
Abstract :Denetimsiz öğrenme algoritmaları, bilgiyi minimum insan etkileşimi ile çıkardıkları için birçok mühendislik uygulamasında kullanılırlar. Modülerlik verileri sınıflandırmak için iyi bilinen denetimsiz öğrenme algoritmalarından biridir, böylece ilişkisel bilgiler vurgulanır. Yakın ilişkili veri noktaları, nispeten yoğun alt topluluklar oluşturmak için bir araya gelir. Böylece, veri noktaları (yada düğümler) arasındaki anlamlı ilişkiler, veri noktalarının ortak özelliklerine genişletilebilir. Bu çalışmada, modülerlik sınıflandırması ile doğası gereği kombinatorik bir problem olan 3-KCP'yi çözmeyi amaçlıyoruz. Bununla birlikte sonuçlarımızı iyi bilinen kümeleme algoritmaları Klik Süzme, Spektral, Merkeziyet ve Hiyerarşik kümeleme ile karşılaştırdık. Araştırmamız, 0.1'den 2.1'e genişletilmiş çözünürlükleri içerir ve 1.0, tüm 3-KCP çözümlerini bulmak için en uygun çözünürlük olduğunu gösteriyor. Modülerliğin belirtilen kümeleme algoritmalarıyla karşılaştırılmamız modülerlik algoritmasının diğer metotlara göre daha avantajlı olduğu gösterdi çünkü karşılaştırılan algoritma, N-KCP anlamında yanlış kümeler veya modülerlikle tanımlanan kümeler olarak sonuçlandı.Keywords : At Çizelgesi, Modülerlik, Denetimsiz öğrenme, 3 KCP