- Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Dergisi
- Volume:24 Issue:71
- Derin Öğrenme Metodu Kullanarak BT Görüntülerinden Akciğer Kanseri Teşhisi
Derin Öğrenme Metodu Kullanarak BT Görüntülerinden Akciğer Kanseri Teşhisi
Authors : Mehmet CİFCİ
Pages : 487-500
Doi:10.21205/deufmd.2022247114
View : 10 | Download : 7
Publication Date : 2022-05-16
Article Type : Research Paper
Abstract :Derin Öğrenmenin (DÖ) teknikleriyle erken kanser tanısı son dönemlerde araştırmacılar arasında en çok üzerinde durulan konu olmuştur. Ayrıca pek çok araştırmada görüldüğü üzere DÖ’nün tıp alanında kullanımı günümüzde daha da önem kazanmaktadır. Araştırmacılar sağlık alanında kanser ve kanser türlerini teşhis etmede genellikle DÖ tekniklerinden yararlanmaktadır. Akciğer kanseri tanısında Bilgisayarlı Tomografi (BT) görüntülerinin net olmamasından dolayı, doğru karar vermede uzmanlar görüş ayrılıkları yaşamaktadır. Bu ve benzeri hastalıkları erken ve doğru tanılayabilen ve daha güvenilir sonuçlar verebilen DÖ karar verme mekanizmaları bir seçenek haline gelmiştir. Yapılan araştırmalara göre akciğer kanseri, dünya çapındaki ölümlerin önde gelen nedenleri arasındadır. Akciğer kanseri, sadece 2019 yılında tahmini 1,76 milyon insanın ölümüne sebep olmuştur. Akciğer kanserinin sebepleri arttıkça bu hastalıktan ölüm oranının %80'in üzerine çıktığı gözlemlenmiştir. Olgular erken tanı konup, tedavi edilirse kanser kaynaklı ölümlerin oranının azalmakta olduğu görülmüştür. Hastalığın doğru saptanması, tedavi edilmesinde önemli rol oynamaktadır. Bu çalışmada DÖ tekniği ile, 6053 akciğer tomografi veri seti üzerinde işlem yapılmıştır. Hastanın kanser olup olmadığına, kanser ise bunun iyi huylu (benign) ya da kötü huylu (malign) olduğuna karar verilmesine çalışılmaktadır. Akciğer BT veri kümesinde görüntü işleme aşamalarının ardından öznitelik çıkarımı yapılıp elde edilen veriler DÖ ’de girdi verisi olarak kullanılmaktadır. Bu çalışmada iki metot önerilmiştir: Birinci yöntemde VGG-16, Inception v4, MobileNet v3 kullanılırken ikinci yöntemde AlexNet yöntemi uygulanmaktadır. İki farklı aşamanın sebebi verinin farklı oranlarda bölünmesidir. Bu çalışma, iki aşamalı olması yönüyle yaygın kullanılan diğer tekniklerden farklıdır. Deneysel sonuçların yüksek performans gösterdiği ve AlexNet’in 0.96, MobileNet v3’ün 0.81, VGG-16 0.84, Inception v4’ün ise 0.86 doğrulukta sonuç verdiği belirlenmiştir. Böylece akciğer hastalarının BT görüntülerinde kanser olup olmadığı, kanser ise hastalığın hangi aşamada olduğu konusunda ön bilgi elde edilebilmektedir.Keywords : Bilgisayarlı Tomografi, Akciğer kanseri, Derin Öğrenme, VGG 16, MobileNet v3, AlexNet, Inception v4, Evrişimli Sinir Ağları