- Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi
- Volume:22 Issue:3
- Boruta Öznitelik Seçimi Algoritması ve Derin Öğrenme Yöntemleri Kullanılarak Covid-19 Hastalığının P...
Boruta Öznitelik Seçimi Algoritması ve Derin Öğrenme Yöntemleri Kullanılarak Covid-19 Hastalığının Prognozunun Tahmini
Authors : Nedim MUZOĞLU, Melike Kaya KARASLAN, Ahmet Mesrur HALEFOĞLU, Sıddık YARMAN
Pages : 577-587
Doi:10.35414/akufemubid.1114346
View : 14 | Download : 5
Publication Date : 2022-06-30
Article Type : Research Paper
Abstract :Covid-19 pandemisi nedeniyle milyonlarca insan hayatını kaybetmiş ve birçok ülkede yetersiz sağlık sistemleri hizmet veremez hale gelmiştir. Covid-19 hastalarının yoğun bakım ve ventilasyon ihtiyaçlarının belirlenerek hastalığın prognozu hakkında tahminlerde bulunulması, hastanın sağlık durumu ve sağlık sistemlerinin etkin kullanımı açısından önemlidir. Bu amaçla oluşturulan Covid-19 akciğer bilgisayarlı tomografi (BT) bulguları veri seti buzlu cam opasitesi, konsolidasyon, kaldırım taşı paterni, konsodilasyon ve buzlu cam, nodül ve buzlu cam sınıflarını içermektedir. Bu çalışmada önerilen yaklaşım dört adımdan oluşmaktadır. Birinci adımda VGG-16 modeli akciğer BT bulguları veri seti ile eğitilmiştir. İkinci adımda elde edilen en ayırt edici öznitelikler BORUTA algoritması kullanılarak seçilmiştir. Üçüncü adımda sıralama yöntemiyle her görüntü için en değerli ilk 200, 300 ve 400 öznitelikler elde edilmiştir. Son adımda ise Destek Vektör Makineleri ve Lineer Diskriminant Analizi ile bu özellikler sınıflandırılmıştır. Akciğer BT bulguları veri seti için elde edilen genel doğruluk %97,02'dir. Derin Öğrenme yöntemleri ile Covid-19 hastalık prognozunu tahmin etmek için oluşturulan veri seti kullanılarak elde edilen bu başarılı sonuç, viral pnömoni türlerinin akciğer BT bulgularının sınıflandırılmasında çok önemli bir yeniliktir.Keywords : Covid 19, Akciğer bt bulguları, Boruta, Buzlu cam opasitesi, Kondolidasyon, Kaldırım taşı paterni