- Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi
- Volume:22 Issue:5
- Rüzgar Gücü Tahmininde Genetik Algoritma ile Öznitelik Seçimi
Rüzgar Gücü Tahmininde Genetik Algoritma ile Öznitelik Seçimi
Authors : Ece ÇETİN YAĞMUR, Sercan YAĞMUR
Pages : 1028-1040
Doi:10.35414/akufemubid.1117779
View : 17 | Download : 6
Publication Date : 2022-10-27
Article Type : Research Paper
Abstract :Sürdürülebilir gelişim için yenilenebilir enerji kaynaklarına olan ihtiyaç her geçen gün artmaktadır. Bu kaynaklardan birisi de rüzgar enerjisidir. Rüzgarın stokastik yapısı nedeniyle rüzgar hızı ve rüzgar gücünün tahmini son yıllarda araştırmacılar tarafından oldukça ilgi çeken bir konu haline gelmiştir. Yapılan çalışmada Türkiye’de yer alan bir rüzgar türbini için 2018 yılı boyunca SCADA sistemi ile elde edilen veri seti ile aynı konum için NASA tarafından paylaşılan meteorolojik veri seti kullanılarak rüzgar gücü tahmini gerçekleştirilmiştir. Girdi değişkenleri olarak SCADA sisteminden çekilen rüzgar hızı, rüzgar yönü ve teorik güç eğrisi; NASA sisteminden çekilen meteorolojik parametreler ve rüzgar gücüne ait geçmiş veriler kullanılmıştır. Modelde yer alan ve hesaplama karmaşıklığına neden olan gereksiz öznitelikler model performansını artırmak amacıyla sarmal seçim yöntemi ile modelden çıkarılmıştır. Sarmal seçim yöntemi olarak Genetik Algoritma (GA) kullanılmıştır. Yapılan çalışmada hem farklı makine öğrenme algoritmalarının tahmin gücü, farklı performans ölçütlerine göre karşılaştırılmış hem de öznitelik seçiminin modele etkisi değerlendirilmiştir. GA ile önerilen nihai modelde değişken sayısı 47’den 9’a indirgenerek gereksiz değişkenler modelden uzaklaştırılmış ve en az sayıda değişken ile R2 değeri 0,98 olan güçlü bir tahmin modeli elde edilmiştir.Keywords : Makine öğrenmesi, Rüzgar gücü, Yenilenebilir enerji, Öznitelik seçimi, Genetik algoritma