- Fırat Üniversitesi Mühendislik Bilimleri Dergisi
- Volume:35 Issue:1
- Önerilen Derin Öğrenme ve Makine Öğrenmesi Tabanlı Hibrit Model ile Çevresel Atıkların Sınıflandırıl...
Önerilen Derin Öğrenme ve Makine Öğrenmesi Tabanlı Hibrit Model ile Çevresel Atıkların Sınıflandırılması
Authors : Elif Nur YILDIZ, Harun BİNGÖL, Muhammed YILDIRIM
Pages : 353-361
Doi:10.35234/fumbd.1230982
View : 10 | Download : 14
Publication Date : 2023-03-28
Article Type : Research Paper
Abstract :Çevre kirliliği sorunu, son zamanlarda artış gösterip hem insanlığa hem de çevreye tehdit oluşturmaktadır. Dünya genelinde çarpık kentleşme, sanayileşme ve insanların sorumsuz davranışları sonucu büyük bir atık problemi ortaya çıkmaktadır. Bu problem hayat standartlarımızı kısıtlayıp, daha sağlıksız bir ortamda yaşam sürmemize neden olmaktadır. Atıklar genellikle çöp olarak bilindiğinden geri kazanılmaya çalışılmadan ortamdan uzaklaştırılır ve bu durumda da atığın geri dönüşüme gitmeden doğada kendi kendine çözünme süresi uzun yıllar almaktadır. Atıkların ömrünü uzatma ve ayrıştırılması ile hem çevre kirliliği azalır hemde geri dönüşüme katkı sağlayarak dünya daha yaşanılabilir bir hale gelir. Derin öğrenme modelleri ve makine öğrenme yöntemleri kullanılarak yapılan bu çalışmada çevremizi daha yaşanılabilir hale getiren ve geri dönüşüme yardımcı olan atık ayrıştırma veri seti kullanılarak sınıflandırma işlemi gerçekleştirilmiştir. Bu çalışmada yapay zeka teknikleri ile atık ayrıştırma tespitinde AlexNet, GoogLeNet, ResNet50, DenseNet201, ShuffleNet, SqueezeNet mimarileri ile sonuçlar elde edilmiştir. Sonraki aşama da derin mimarilerden elde edilen özellik haritaları destek vektör makineleri insert ignore into journalissuearticles values(DVM);, k-en yakın komşu insert ignore into journalissuearticles values(KNN); ve karar ağaçlarında insert ignore into journalissuearticles values(KA); sınıflandırılmıştır. Mimarilerin elde ettikleri sonuçlar karşılaştırılarak bu problem için en iyi mimari seçilmiştir. Deneyler sonucunda önermiş olduğumuz hibrit model %85.94 doğruluk değeri elde etmiştir.Keywords : Atık sınıflandırma, yapay zeka, derin öğrenme, ESA, DVM