- Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
- Volume:7 Issue:3
- IEEE 14-Baralı Güç Sisteminde Gerilim Kararlılığının Uç Öğrenme Makinesi İle Analizi
IEEE 14-Baralı Güç Sisteminde Gerilim Kararlılığının Uç Öğrenme Makinesi İle Analizi
Authors : Hakan AÇIKGÖZ, İlhami POYRAZ, Resul ÇÖTELİ
Pages : 564-575
Doi:10.29109/gujsc.547860
View : 10 | Download : 8
Publication Date : 2019-09-27
Article Type : Research Paper
Abstract :Günümüzde elektrik enerjisi ihtiyacı, teknolojik gelişmeler sonucunda nüfusla orantılı olarak hızla artmaktadır. Artan bu talebi karşılamak için büyük güçlü üretim merkezleri kurulmuştur. Üretim merkezlerinin tüketim merkezlerinden uzakta kurulma gerekliliği, üretilen elektrik enerjisinin çok yüksek gerilimle ve uzun iletim hatlarıyla tüketim merkezlerine iletim zorunluluğu getirmiştir. Güç sistemleri de bu duruma bağlı olarak hızla büyümüş ve karmaşık bir yapı oluşturmuştur. Bu durum önemli işletme ve kontrol sorunlarını da beraberinde getirmiştir. Bu çalışmada, IEEE 14-baralı güç sisteminde gerilim kararlılığı Uç Öğrenme Makinesi (UÖM) yardımıyla incelenmiştir. Bu amaçla, IEEE 14-baralı güç sistemi modeli Matlab ortamında oluşturulmuş ve bu model kullanılarak Newton-Raphson yöntemi yardımı ile yük akış analizi yapılmıştır. Bu güç sisteminde gerilim kararlılığı Hat Kararlılık İndeksi (HKİ) hesaplanarak değerlendirilmiştir. Yük akış analizinde tüm baraların aktif ve reaktif güçleri 0.05 birim değer (pu) artırılmış ve her bir baraya ait toplam 1000 adet aktif güç, reaktif güç, ilgili baranın gerilimi ve faz açısı elde edilmiştir. Bu değerler kullanılarak HKİ değerleri hesaplanmıştır. UÖM’ye girişler; aktif güç, reaktif güç, ilgili baranın gerilimi ve faz açısı seçilmiştir. UÖM’nin çıkışı ise HKİ değerleri olarak belirlenmiştir. UÖM’nın test başarımı 5-kat çapraz doğrulama ile verilmiştir. Ayrıca UÖM’nın başarımı farklı sayıda gizli katman hücre sayısı ve farklı tip aktivasyon fonksiyonları için incelenmiştir. Önerilen yöntemin en iyi test başarımı gizli katman hücre sayısı 100 olan ve tanjant sigmoid aktivasyon fonksiyonu kullanan UÖM’den elde edilmiştir. Elde edilen sonuçlardan, IEEE 14-baralı güç sistemlerinde gerilim kararlılığının tespitinde UÖM’nin HKİ’yi oldukça yüksek bir başarımla tahmin ettiği görülmüştür.Keywords : Gerilim kararlılığı, Uç öğrenme makinesi, Hat kararlılık indeksi