- Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji
- Volume:10 Issue:1
- Cloud Based WEB Application Design for Automatic Turkish Business Card Recognition and Its Performan...
Cloud Based WEB Application Design for Automatic Turkish Business Card Recognition and Its Performance Evaluation
Authors : İbrahim ŞAHİN, Mustafa Hikmet Bilgehan UÇAR, Serdar SOLAK
Pages : 118-134
Doi:10.29109/gujsc.1030997
View : 14 | Download : 9
Publication Date : 2022-03-30
Article Type : Research Paper
Abstract :Bu çalışmada, Türkçe hazırlanmış fiziksel kartvizitleri, sayısal olarak bulut tabanlı veritabanında saklayan dijital-kartvizitlik yazılımı geliştirilmiştir. Önerilen yazılımda, fiziksel kartvizit üzerindeki bilgiler kartvizit fotoğraflarından optik karakter tanıma (Optical Character Recognition: OCR) yöntemi ile metine çevrilmekte daha sonra geliştirilen algoritmalar yardımıyla elde edilen metinler ayrıştırılarak gruplandırılmaktadır. Son olarak sayısal olarak elde edilen kartvizit verileri, daha sonra kullanılmak üzere bulut tabanlı veritabanında saklanmaktadır. Türkçe kartvizitler göz önüne alındığında, Türk diline özgün karakterlerin yanı sıra ülkeye özgün çok çeşitli-karmaşık kartvizitlerin de olduğu bilinmektedir. Bu kapsamda çalışmada öncelikli olarak Türkçe karakterleri doğru tanıyan bir yöntem belirlenmiştir. Daha sonra okunan verilerden isimler, cep telefonu, e-posta adresi, şirket unvanı, görevi ve benzeri anlamlı kartvizit bilgilerinin ayrıştırılması yapılmıştır. Bu ayrıştırmaları yapabilmek için her alan için kendine özel yöntemler geliştirilerek alan bazlı algoritmalarla daha doğru ve anlamlı verilerin elde edilmesi sağlanmıştır. Geliştirilen bulut tabanlı, platformdan bağımsız arayüz sayesinde internet üzerinden tek kullanıcı ile birden fazla cihazdan verilere erişilebilmesine olanak sağlanmıştır. Çalışma aynı zamanda tek bir platformdan, birden çok hesap ve ona bağlı birden fazla kullanıcının aynı anda kullanabileceği katmanlı servis mimarisi ve veritabanı alt yapısı da sunmaktadır. Ayrıca geliştirilen yazılım ile gerçekleştirilen analizlerde, farklı özelliklere sahip 15 adet kartvizitin %80'in üzerindeki doğruluk oranı ile okunduğu tespit edilmiştir.Keywords : Bulut Yazılımı, Kartvizit Karakter Okuma, Optik Karakter Tanıma OCR, Tesseract