- Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
- Volume:34 Issue:2
- GMACA ile hareket tespiti yapılan video görüntülerde insan hareketlerinin tanınması
GMACA ile hareket tespiti yapılan video görüntülerde insan hareketlerinin tanınması
Authors : Serkan PELDEK, Yaşar BECERİKLİ
Pages : 1025-1044
Doi:10.17341/gazimmfd.460500
View : 13 | Download : 7
Publication Date : 2019-05-23
Article Type : Research Paper
Abstract :Bu makale araştırması kapsamında insan hareketlerinin tanınması, Genelleştirilmiş Çoklu Cezbedici Hücresel Otomatlar (Generalized Multiple Attractor Cellular Automata(GMACA)) ile yapılan hareket tespit görüntüleri kullanılarak gerçekleştirilmiştir. GMACA Hücresel Otomatların birden fazla hücreye uygulanan türüdür. Hücresel otomatların birden fazla hücreye uygulanması kural vektörü kullanılarak gerçekleştirilir. Literatür araştırmasında video görüntülerindeki insan hareketlerini tanıma görevinin; neleri içereceği, önemi, uygulama alanları vb. konular araştırılmıştır. İnsan hareketlerinin tanınması beş aşamada gerçekleştirilir; insan nesnesinin tespiti ve takibi gerekir, insan nesnesine ait özelliklerin çıkarımı ve bu özellikler kullanılarak harekete ait özelliklerin çıkarımı, basit hareketlerden oluşan etkinliklerin tanınması. Geliştirilen hareket tanıma yönteminde ilk önce görüntüler gri renk uzayına dönüştürülür. Daha sonra hareket tespiti için kullanılacak GMACA kural vektörü oluşturulur. GMACA kullanılarak hareket tespiti yapılır. Hareket tespit görüntülerinden HOG özellik vektörü çıkarılır ve elde edilen HOG özellik vektörleri ait oldukları harekete göre etiketlendirilir. Bu şekilde veri seti oluşturulur. Oluşturulan veri seti çapraz-doğrula yöntemi ile eğitim ve test veri setlerine ayrıştırılır. İnsan hareketlerinin tanınması SVM yöntemi ile gerçekleştirilir. Deneysel sonuçlar karışıklık matrisi ile gösterilmiştir. Karışıklık matrisi kullanılarak geliştirilen tanıma yönteminin sınıflandırma performansı ortaya konmuştur. GMACA ile elde edilen hareket tespit görüntüleri ile yapılan hareket tanıma uygulaması mevcut arka plan çıkarma çalışmaları kadar iyi sonuç vermiştir. Elde edilen sonuçlar GMACA’nın hareket tespitinde ve hareket tanıma çalışmalarında kullanılabileceğini göstermektedir. GMACA’nın zayıf yanı ikili örüntüler üzerinde uygulanabiliyor olmasıdır. Geliştirdiğimiz hareket tespit yöntemi onluk tabandaki piksel değerlerinin ikilik tabana dönüştürülmesinden sonra uygulanabilir.Keywords : Genelleştirilmiş çoklu cezbedici hücresel otomatlar, Hareket tespiti, Hareket tanıma, Hücresel Otomatlar