- Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
- Volume:36 Issue:2
- İnsanın günlük aktivitelerinin yeni bir veri kümesi: Derin öğrenme tekniklerini kullanarak sınıfland...
İnsanın günlük aktivitelerinin yeni bir veri kümesi: Derin öğrenme tekniklerini kullanarak sınıflandırma performansı için kıyaslama sonuçları
Authors : İbrahim Ali METİN, Bahadir KARASULU
Pages : 759-778
Doi:10.17341/gazimmfd.772849
View : 22 | Download : 6
Publication Date : 2021-03-05
Article Type : Research Paper
Abstract :İnsan aktivitelerini sınıflandırma çalışmaları, bireylerin içinde bulundukları ortam ile etkileşimini değerlendirerek günlük yaşamı kolaylaştıracak yeni sistemler geliştirilmesine katkı sağlayabilir. Bu çalışmada, bireylerin gün içerisinde gerçekleştirdikleri aktivitelerin sınıflandırılmasında kullanılmak üzere yeni bir veri kümesi sunulmaktadır. Öncelikle, çalışma kapsamında çeşitli derin mimari modelleri halkın kullanımına açık literatürde iyi bilinen hazır veri kümeleri ile test edilmiştir. Sonrasında, 25 - 55 yaş aralığındaki beş erkek ve beş kadından oluşan on gönüllü bireyin bel bölgesine yerleştirilen akıllı telefonla toplanan duyarga verileriyle oluşturulmuş yeni veri kümemiz kullanılarak çeşitli sınıflandırma deneyleri gerçekleştirilmiştir. Her bir aktivitenin iki farklı pozisyonda verisi alınmış, böylece 4 dinamik ve 3 statik aktivite içeren 15 saniyelik veriler elde edilmiştir. Her bir aktivite pozisyonu için 20 Hz örnekleme frekansıyla 1 saniyede sinyal penceresi başına 20 okuma yapılmaktadır. Çalışmadaki yazılımsal araç sayesinde tekrarlayan sinir ağ modelleri ve evrişimli sinir ağı modelini içeren derin öğrenme mimarilerinin farklı ağ parametreleri ve katman seçimine imkân sağlanarak çeşitli deneyler başarıyla gerçekleştirilmiştir. Yeni veri kümesi ham verilerin yanı sıra, Butterworth filtresi kullanımıyla oluşturulan bazı alternatif altkümeleri de içermektedir. Deneyler sonucunda, bireylerin çeşitli aktiviteleri için %97 ilâ %99 doğruluk oranında sınıflandırma başarımı çeşitli veri kümeleriyle elde edilmiştir. Yeni veri kümesinin insan aktivitelerinin sınıflandırılması ve tahmin edilmesine dair çalışmalarda kullanıma uygunluğu kanıtlanmıştır.Keywords : İnsan Aktiviteleri, Tekrarlayan Sinir Ağı, Evrişimli Sinir Ağı, Veri Kümesi, Başarım Değerlendirme