- Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
- Volume:30 Issue:1
- LÖKOSİT HÜCRELERİNİN PREPARAT GÖRÜNTÜSÜNDEN TESPİTİ VE SINIFLANDIRILMASI
LÖKOSİT HÜCRELERİNİN PREPARAT GÖRÜNTÜSÜNDEN TESPİTİ VE SINIFLANDIRILMASI
Authors : Ömer KASIM, Ahmet KUZUCUOĞLU
Pages : 95-109
Doi:10.17341/gummfd.10332
View : 14 | Download : 6
Publication Date : 2015-03-31
Article Type : Research Paper
Abstract :Kan yapısının analiziyle hastalıkların teşhisinin konulması işlemi, mikroskop yardımıyla morfolojik incelemeye dayanır. Hematoloji uzmanları, preparatta bulunan lökosit hücrelerinin yapısını ve sayısını inceleyerek morfolojik incelemeyi gerçekleştirirler. Bu işlemler yoğun bir tempoda, boyama ve ışıklandırma için ayrı bir çaba sarf etmeksizin yapılmaktadır. Böyle bir durumda hem gözden kaçabilecek bilgiler hem de uzmanın harcadığı zaman hayati öneme sahiptir. Bu sıkıntıları telafi etmek amacıyla geliştirilen algoritmayla, çok kaliteli hazırlanmamış preparat görüntüsünde bile lökosit hücrelerinin analizi yapılmaktadır. Böylelikle uzmana daha temiz ve net görüntüler sunularak zaman kaybı ve gözden kaçırma ile oluşabilecek hatalar en aza indirgenebilir. Diğer taraftan ülkemizdeki uzman sayısının yetersiz olması sebebiyle uzmanın olmadığı sağlık kuruluşlarındaki geliştirilen bu programla yapılan incelemelerde, hastalık belirtisi gösteren lökosit hücreleri tespit edilerek gerekli yönlendirmeler yapılır. Bu işlemler bütününü sağlamak için görüntü, Otsu yöntemi ile dinamiklik katılan Parçalı Lineer Filtre ile zenginleştirilerek lökosit hücre alanları daha belirgin hale getirilmiştir. Sonrasında K-Ortalamalarla desteklenen Markov Rastsal Alanları ve Beklenti Enbüyükleme yöntemini içeren uzamsal yapıya sahip hibrit yapıyla lökosit hücre alanları bölütlenmiştir. Böylece farklı boyama kalitesi ve ışıklandırmadan kaynaklanan sıkıntılar en aza indirgenmiştir. Bölütlemeyle elde edilen lökosit alanları üzerinden öznitelik çıkarımıyla hücreye ait 34 farklı bilgiyi içeren öznitelik vektörü oluşturulmuştur. Gini analiziyle bu vektörün eleman sayısı 11’e düşürülmüştür. Bu çalışmada geliştirilen Cnt ve Sc Faktörlerle yapılan Gini analizinde bu sayı azalarak 5’e düşmüş ve 5 farklı lökosit hücresi olasılıksal yapay sinir ağlarıyla daha hızlı sınıflandırılmıştır. Sınıflandırma başarısı, test amacıyla ayrılan veri setinde %91,65 olarak ölçülmüştür. Sonuçlar, bu alanda çalışma yapan uzmanlara ve uzmanın olmadığı ortamlarda gerekli yönlendirmelerin yapılmasına olanak sağlayacak niteliktedir.Keywords : Lökosit hücreleri, otsu metodu, parçalı lineer filtre, k ortalamalar metodu, markov rastsal alan, beklenti enbüyükleme metodu, öznitelik çıkarımı, olasılıksal yapay sinir ağları, sınıflandırma