- Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi
- Volume:40 Issue:1
- sEmg tabanlı el hareket tanımada farklı kol pozisyon ve açılarının sınıflandırma başarısına olan etk...
sEmg tabanlı el hareket tanımada farklı kol pozisyon ve açılarının sınıflandırma başarısına olan etkilerinin incelenmesi
Authors : Emre Parlak, Ulvi Başpınar
Pages : 297-312
Doi:10.17341/gazimmfd.1135737
View : 38 | Download : 78
Publication Date : 2024-08-16
Article Type : Research Paper
Abstract :EMG tabanlı uygulamalar ile ilgili literatürde oldukça çok sayıda çalışma yer almaktadır. Bu çalışmalar, insan makine etkileşimi başta olmak üzere rehabilitasyon, aktif protez kontrolü gibi alanlarda yoğunlaşmıştır. Yapılan çalışmalarda EMG sinyallerinin sınıflandırılmasında sınıflayıcıların performansını etkileyen kol kaslarının yorulması, ciltteki ter, elektrotlardan kaynaklanan gürültüler gibi çok sayıda faktörden bahsedilmiştir. Yapılan bu çalışmaların birçoğunda EMG kayıtları ön kol sabit ve belirli bir pozisyondayken yapılmıştır. Hareketin yapıldığı kol pozisyonu ve bilek açıları da hareket tahminini etkileyen etkenlerdendir. Aktif protez kontrolü, insan makine etkileşimi gibi sistemlerde kullanılan sEMG sinyallerinin günlük hayatın akışında kolun farklı pozisyon ve açılarında da doğru sınıflandırması beklenmektedir. Bu çalışmada birden fazla kişinin sağ ön kollarından alınan yüzey elektromiyogram sinyalleri kullanılarak el hareketleri, bu el hareketlerinin yapıldığı bilek açıları ve kol pozisyonları tespit edilmek istenmiş, aynı zamanda farklı kol pozisyonlarının ve açılarının el hareket sınıflamasındaki etkileri araştırılmıştır. Hareketin yapıldığı farklı kol pozisyonları ve açılar nedeniyle ortaya çıkan olumsuz etkilerin ivme ve jiroskop verileri kullanılarak giderilip giderilemeyeceği noktasında da değerlendirmeler yapılarak sınıflandırıcı performanslarına etkilerine yer verilmiştir. Sınıflandırma aracı olarak yapay sinir ağları ve destek vektör makineleri kullanılmış, performans karşılaştırması yapılmıştır. Yapılan değerlendirme sonucu günlük hayatta kullanılması planlanan EMG tabanlı bir sistemin eğitiminde ön kolun tüm pozisyon ve açılarında eğitim verisinin toplanması sınıflandırma sonuçlarını iyileştirdiği tespit edilmiştir. Farklı pozisyonlarda ivme ve jiroskop verilerinin hareket sınıflama performansına çok az bir katkı sunduğu belirlenmiştir. Çalışma kapsamında yalnız EMG verisinin bilek açısını ve kol pozisyonunu tespit etmekte yetersiz olduğu ivme ile jiroskop verilerinin eklenmesi ise bilek açısı tahminleri yükseltmiştir. Kol pozisyonu tespitinde ise EMG ile birlikte ivme verisinin kol pozisyon açısını belirlemede etkin olduğu görülmüştür. Sınıflandırıcı performansı olarak gruplar incelendiğinde genel olarak DVM sınıflayıcısının daha yüksek sınıflama performansı göstermekle beraber YSA’nın da iyi sonuçlar verdiği gözlenmiştir.Keywords : EMG, Yapay Sinir Ağları, Destek Vektör Makinesi, El Hareket Tanıma, İnsan Makine Etkileşimi