- Gümüşhane Üniversitesi Fen Bilimleri Dergisi
- Volume:10 Issue:4
- Deep Learning Based Regression Approach for Algorithmic Stock Trading: A Case Study of the Bist30
Deep Learning Based Regression Approach for Algorithmic Stock Trading: A Case Study of the Bist30
Authors : Yunus SANTUR
Pages : 1195-1211
Doi:10.17714/gumusfenbil.707088
View : 11 | Download : 7
Publication Date : 2020-10-15
Article Type : Research Paper
Abstract :Günümüzde yapay zekânın yaygın kullanım alanlarından bir tanesi de finans piyasalarıdır. Kısa adı borsa olarak bilinen bu piyasalarda makine öğrenmesi ve derin öğrenme kullanılarak geleceğe yönelik fiyat tahminleri yapmak, endeks, sektör ve hisse senetlerinin yükseliş ve düşüş öngörülerinin yapılması bu alanda kullanılan temel yaklaşımlardır. Dünya genelinde finans piyasalarında yakın bir gelecekte yapay zekâ temelli yazılım robotlarının insanlar yerine işlem yapması öngörülmektedir. Bu amaçla gerçekleştirilen çalışmalarda endeks ve hisse senedi fiyat hareketleri kullanılarak öğrenme modelleri geliştirilmektedir. Geliştirilen modellerin başarımlarını göstermek için doğruluk, hata değeri ve portföy simülasyonu gibi doğrulama çalışmaları yapılmaktadır. Bu çalışmada, Borsa İstanbul’a (BİST) ait veriler kullanılarak kapanış fiyatlarından oluşan zaman serisi üzerinde adaptif al-sat işlemi yapılması için derin öğrenme kullanan bir regresyon modeli geliştirilmiştir. BİST30 endeksinin 2006-2015 aralığı eğitim, 2015-2018 aralığı ise test için kullanılmış ve 694 işlem gününe ait test verileri üzerinde model portföy değeri %39 değer kazanmış ve trend yönü %82 doğrulukla tahmin edilmiştir.Keywords : Bist, Derin Öğrenme, LSTM, Borsa