- Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi
- Volume:13 Issue:4
- Atık Su Arıtma Tesislerinde Biyokimyasal Oksijen İhtiyacının Yapay Sinir Ağı ve Regresyon Analiziyle...
Atık Su Arıtma Tesislerinde Biyokimyasal Oksijen İhtiyacının Yapay Sinir Ağı ve Regresyon Analiziyle Tahmin Edilmesi
Authors : Furkan Sidal, Yener Altun
Pages : 2934-2944
Doi:10.21597/jist.1296789
View : 89 | Download : 94
Publication Date : 2023-12-01
Article Type : Research Paper
Abstract :Atık su arıtma tesislerinde su kalitesini takip edip müdahale etmek, tesislerin yönetiminde önemli bir rol oynar. Atık su arıtma tesisleri yapılırken ve işletilirken, biyolojik oksijen ihtiyacı değerlerine gereksinim duyulmaktadır. Bu değerin ölçülmesi diğer parametrelere göre daha uzun sürelerde gerçekleşmekte ve deneylerin yapılması da zahmetli ve maliyetli olmaktadır. Bu çalışmada biyolojik oksijen değerinin, atık su arıtma tesislerinde kolayca ölçülebilen diğer parametreler aracılığıyla yapay sinir ağları ve çoklu regresyon analizi teknikleriyle tahmin edilmesi amaçlanmıştır. Çalışmada kullanılan ölçüm sonuçları 2021-2022 yılları arasında Van iline ait bir atık su arıtma tesisinde ölçülen verileri kapsamaktadır. Kullanılan tahmin girdi parametreleri pH, elektriksel iletkenlik, sıcaklık, çözünmüş oksijen, kimyasal oksijen ihtiyacı, askıda katı madde, toplam azot ve toplam fosfor değerleri bağımsız değişken ve biyolojik oksijen değeri ise bağımlı değişken olarak seçilmiştir. Yapılan tahminlerde yapay sinir ağı modeli için MAPE değeri %0.12, MAD değeri 0.04, R değeri %99.83 ve R2 değeri %99.68 olarak elde edilmiştir. Aynı şekilde çoklu regresyon analizi yöntemi ile BOİ tahmin modelinde MAPE değeri %0.68, MAD değeri 0.06, R değeri %96.40 ve R2 değeri %92.92 olarak bulunmuştur. Çalışmada elde edilen bulgular biyolojik oksijen değerinin kolayca ölçülebilen parametreler yardımıyla ileri beslemeli yapay sinir ağları ve doğrusal çoklu regresyon analizi teknikleri ile oluşturulmuş olan modeller kullanılarak tahmin edilmesi mümkündür. Her iki model karşılaştırıldığında ise yapay sinir ağları ile geliştirilmiş olan modelin çoklu regresyon analizi ile geliştirilmiş olan modele göre daha iyi performans sergilediği tespit edilmiştir.Keywords : Yapay sinir ağaları, Çoklu regresyon analizi, Biyolojik oksijen ihtiyacı, Atık su arıtma