- Jeodezi ve Jeoinformasyon Dergisi
- Volume:11 Issue:1
- İç mekân harita yapımı için makine öğrenmesiyle nokta bulutlarının sınıflandırılması
İç mekân harita yapımı için makine öğrenmesiyle nokta bulutlarının sınıflandırılması
Authors : Sena Varbil, Alper Şen
Pages : 30-40
Doi:10.9733/JGG.2024R0003.T
View : 277 | Download : 241
Publication Date : 2024-05-03
Article Type : Research Paper
Abstract :İç mekânlara ait 3-Boyutlu nokta bulutu sınıflandırması, iç mekân harita yapımı, iç mekân navigasyonu, bina yenileme, tesis yönetimi vb. uygulamalarda iç mekân modellerinin oluşturulmasında büyük önem taşımaktadır. Bu çalışmada, Stanford Üniversitesi tarafından üretilen S3DIS (Stanford 3D Indoor Scene) veri setinde bulunan ofis odalarına ait nokta bulutları makine öğrenmesi yöntemlerinden Rasgele Orman (RO) ve Çok Katmanlı Algılayıcı (ÇKA) ile sınıflandırılarak iç mekân haritaları oluşturulmuştur. Giriş verileri için X, Y, Z ve R, G, B öznitelik bilgileri kullanılmıştır. Sınıflar tavan, zemin, duvar, kapı, pencere, kolon, masa, sandalye, pano, dağınıklık ve kitaplık nesnelerini kapsamaktadır. Eğitim ve test verilerinde iç mekân haritalarının oluşturulması amacıyla duvar, kapı, pencere, kolon, pano ve kitaplık bir sınıf (birleştirilmiş sınıf-1); masa, sandalye ve dağınıklık bir sınıf (birleştirilmiş sınıf-2) halinde birleştirilmiştir. Eğitim verisi için bir ofis kullanılmış ve beş ayrı ofiste test edilmiştir. RO yöntemiyle ortalama %88, ÇKA yöntemiyle ortalama %85 sınıflandırma doğruluğu elde edilmiştir. Böylece özellikle yüksek doğrulukla sınıflandırılan tavan ve birleştirilmiş sınıf-1 nesneleri sayesinde iç mekân haritaları da yüksek doğrulukla elde edilmiştir.Keywords : İç mekân, Nokta bulutu, Sınıflandırma, Makine öğrenmesi, Rastgele Orman, Çok Katmanlı Algılayıcı