- Mühendislik Bilimleri ve Tasarım Dergisi
- Volume:8 Issue:5 Special Issue
- DERİN ÖĞRENME TABANLI VE PID KONTROL TABANLI SÜRÜCÜSÜZ ARAÇ SİSTEMLERİ
DERİN ÖĞRENME TABANLI VE PID KONTROL TABANLI SÜRÜCÜSÜZ ARAÇ SİSTEMLERİ
Authors : Koray AKİ, Ahmet Emir DİRİK
Pages : 306-316
Doi:10.21923/jesd.829598
View : 11 | Download : 11
Publication Date : 2020-12-29
Article Type : Research Paper
Abstract :İnsan müdahalesi olmadan kendi kendine hareket edebilen araçlar sürücüsüz araç olarak adlandırılmaktadır. Sürücüsüz araçlar son yirmi yılda; askeri, lojistik ve endüstriyel üretimdeki potansiyel uygulamaları ile hem akademiden, hem de endüstriden büyük ilgi görmeye başlamıştır. Sürücüsüz araçların kullanılması günümüz trafiğinin çevresel etkilerini azaltmak ve trafik kazalarını önlemek gibi birçok konuda toplumsal fayda sağlamaktadır. Sürücüsüz araçlarda navigasyon için GPS, çarpışmaları önlemek için sensör ve nesneleri tespit etmek için kamera gibi çeşitli teknolojiler kullanılmaktadır. Bu teknolojilerin hepsi ya da birkaçı kullanılarak Derin Öğrenme tabanlı ve PID kontrol ile otonom sürüş yapılabilmektedir. Bu çalışmada Derin Öğrenme Tabanlı model eğitimi ve otonom sürüş testleri sürüş simülatöründe gerçekleştirilmiştir. Sürüş simülatöründen aracın direksiyon açısı, hız bilgisi ve ön camına monte edilen üç kameradan insert ignore into journalissuearticles values(sağ, sol ve orta); görüntü bilgisi alınmıştır. Aracın otonom hareketi Derin Öğrenme tabanlı model eğitimi gerçekleştirilerek ve PID kontrol ile sağlanmıştır. Bu çalışmada Derin Öğrenme ile eğitilen modelin sürüş performansı ile PID kontrol ile gerçekleştirilen sürüş performansı sürüş simülatöründe bir tam turda karşılaştırılmıştır. Aracın sürüş parkurundaki bir tam turda gerçek zamanlı olarak özerk hareketi kaydedilmiş ve başarım değerlendirmesi gerçekleştirilmiştir. Sürüş simülatöründe gerçekleştirilen testler sonucunda PID kontrol tabanlı sürüşte de başarılı sonuçlar elde edilmiş olmasına rağmen, Derin Öğrenme tabanlı modelin performansının daha iyi olduğu belirlenmiştir.Keywords : derin öğrenme, sürücüsüz araç, CNN, PID, evrişimsel sinir ağları