- Mühendislik Bilimleri ve Tasarım Dergisi
- Volume:9 Issue:4
- CLASSIFICATION OF APPLE LEAF DISEASES USING THE PROPOSED CONVOLUTION NEURAL NETWORK APPROACH
CLASSIFICATION OF APPLE LEAF DISEASES USING THE PROPOSED CONVOLUTION NEURAL NETWORK APPROACH
Authors : Halit ÇETİNER
Pages : 1130-1140
Doi:10.21923/jesd.980629
View : 15 | Download : 8
Publication Date : 2021-12-20
Article Type : Research Paper
Abstract :Tarım arazilerindeki elma ağaçlarını sürekli olarak kontrol etmek zordur. Ağaç yapraklarında oluşan bir hastalık durumunda diğer yapraklara hastalığın bulaş riski yüksektir. Erken dönemde hastalığın otomatik tespitini gerçekleştirerek bitkinin daha fazla bozulmasını önlemek gereklidir. Eğer hastalık tespitinde geç kalınırsa planlanan üretim gerçekleştirilememektedir. Bir çiftçi ya da tarım uzmanı tarafından hastalıkların tespit edilmesi durumunda geç kalınmaktadır. Buna ek olarak tarım arazileri büyüdükçe ihtiyaç duyulan uzman sayısı da ona göre artış göstermektedir. Bu sebeplerden dolayı elma ağaçlarına ait yaprak görüntülerini kullanarak ağaç yaprakları elma kabuğu, yaprak pası, sağlıklı elma ve birden fazla hastalık durumları olmak üzere 4 farklı sınıfa gruplandırılmıştır. Öne sürülen yöntemde görüntülerde gürültülerin temizlenmesi, ilgili alanın tespiti ve YUV renk uzayı üzerinde histogram eşitleme gerçekleştirilmiştir. Kullanılan veri setinde sınıf dağılımlarının dengesiz olmasından dolayı SMOTE yöntemi ile azınlık olarak kalan sınıflar için veri büyütmesi uygulanmıştır. Sonrasında DenseNet121, DenseNet201, InceptionResNetV2, InceptionV3, ResNet50V2 önceden eğitilmiş ağ modelleri kullanılarak öznitelikler çıkartılmıştır. Çıkartılan öznitelikler geliştirilen CNN tabanlı bir yöntemle 99% doğruluk oranında sınıflandırılma gerçekleştirilmiştir.Keywords : Konvolüsyonel Sinir Ağı, Görüntü İşleme, Elma Yaprağı, SMOTE, Önceden Eğitilmiş Ağ