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Abstract

In this paper, a semi-Markovian random walk with delay and a discrete
interference of chance (X(t)) is considered. It is assumed that the
random variables {ζn} , n ≥ 1 which describe the discrete interference
of chance have Weibull distribution with parameters (α, λ), α > 1, λ >
0. Under this assumption, the ergodicity of this process is discussed and
the asymptotic expansions with three terms for the first four moments
of the ergodic distribution of the process X(t) are derived, when λ→ 0.
Moreover, the asymptotic expansions for the skewness and kurtosis of
the ergodic distribution of the process X(t) are established.
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1. Introduction

Many applied problems of the queueing, reliability, inventory control, insurance and
other theories are formulated in the terms of random walks with various types of barrier.
Some important studies on this topic exist in the literature (see, for example, [1–9]). Let
us consider the following model before stating the problem mathematically.

The Model.Suppose that, the system is in state z = s+ x at the initial time t = 0.
Here, s > 0 is a predefined control level, and x > 0. Demands and supplies are occurred
at the random times Tn =

∑n
i=1 ξi, n ≥ 1. System passes from a state to another one by

jumping at time Tn, according to quantities of demands and supplies {ηn} , n ≥ 1. This
change of system continues until certain random time τ1, where τ1 is the first passage time
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to the control level s. When this case happens, by interfering to the system from external,
systems is stopped at the level s for a random time θ1. Usually the random variables θ1
and K = Eθ1/Eξ1 are called as delaying time and delaying coefficient for the system,
respectively. Then, as a consequence of external interference, system is brought from the
control level s to state ζ1. Thus, the first period has been completed. Afterwards, system
will continue its function similar to the preceding period.

Note that, in the study [8], [2] and [1] the random variable ζ1, which describes the
discrete interference of chance, has an exponential, triangular and gamma distribution,
respectively and the stationary moments of ergodic distribution were investigated when
the delaying time is zero, i.e. θ1 = 0. But the delaying time is necessary for many real
systems. So, in this study, unlike [8], [2] and [1], the asymptotic expansions with three
terms for the first four moments of the ergodic distribution of the process X(t) will be
investigated by taking into account the delaying time (θ1). Also in this study we assume
that the random variable ζ1 has Weibull distribution with parameters (α, λ), α > 1,
λ > 0.

Our aim, in this paper, is to investigate the asymptotic behavior of the ergodic mo-
ments of this process t ∈ [γn, τn+1), when λ→ 0.

2. Mathematical construction of the process X(t)

Let {(ξn, ηn, θn, ζn)} , n ≥ 1 be a sequence of independent and identically distributed
vector of random variables defined on any probability space (Ω,F, P ), such that ξn and
θn take only positive values, ηn takes negative values as well as positive ones; ζn has
Weibull distribution with parameters (α, λ), α > 1, λ > 0 . Suppose that ξ1, ηn, θ1, ζ1
are mutually independent random variables and the distribution functions of them are
known, i.e.,

Φ (t) = P {ξ1 ≤ t} ; F (x) = P {η1 ≤ x} ; H(u) = P {θ1 ≤ u} ; t ≥ 0;

x ∈ (−∞,+∞)u ≥ 0 and π(z) = P{ζ1 ≤ z} = 1−e−(λz)α , z ≥ 0, α > 1, λ > 0.

Define renewal sequence {Tn} and random walk {Sn} as follows:

Tn =

n∑
i=1

ξi, Sn =

n∑
i=1

ηi, T0 = S0 = 0, n = 1, 2, . . . .

and a sequence of integer valued random variables {Nn } as:

N0 = 0,

N1 = inf {n ≥ 1 : s+ x− Sn < s} = inf {n ≥ 1 : Sn > x} = N(x), x ≥ 0;

Nn+1 = inf

{
k ≥ 1 : s+ ζn −

(
N1+N2+...+Nn+k∑
i=N1+N2+...+Nn+1

ηi

)
< s

}
= inf{k ≥ 1 : SN1+N2+...+Nn+k − SN1+N2+...+Nn > ζn}, n = 1, 2, . . .

Here s > 0 and inf{∅} = +∞ is stipulated.

Let τ0 = γ0 = 0, τ1 = TN1 =
∑N1
i=1 ξi, γ1 = τ1 + θ1 = TN1 + θ1

τn = TN1+...+Nn +

n−1∑
i=1

θi, γn = τn + θn = TN1+...+Nn +
n∑
i=1

θi, n ≥ 1.

Let’s construct the sequence of the counting processes:
v0(t) ≡ v([0, t]) ≡ v(t) = max{n ≥ 0 : Tn ≤ t}, t ∈ [0, τ1).
vr(t) ≡ v([γr, t]) = max{n ≥ 0 : γr + (TN0+N1+...+Nn+n − TN0+N1+...+Nn) ≤ t},
t ∈ [γr, τr+1), r = 0, 1, 2, . . .
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By using these notations, the desired stochastic process X(t) is defined as follows:
a)X(t) = s for all t ∈ [τn, γn)
b)X(t) = s+ ζn − (SN0+N1+...Nn+vn(t) − SN0+N1+...Nn) for all t ∈ [γn, τn+1)

where n = 0, 1, 2, ...; γ0 = 0; ζ0 = x; N0 = 0.
In this study, the process X(t) will be called ”a semi-Markovian random walk with

delay and Weibull distributed interference of chance”.
The main purpose of this study is to investigate the asymptotic behavior of the sta-

tionary moments of the process X(t), as λ → 0. For this purpose, we first discuss the
ergodicity of the process X(t).

3. Preliminary discussions

Firstly, we can state the following lemma from [1].

3.1. Lemma. Assume that the initial sequence of the random vectors {(ξn, ηn, θn, ζn)},
n ≥ 1 , satisfies the following supplementary conditions:
1) Eξ1 <∞; 2) Eθ1 <∞; 3) 0 < Eη1 <∞; 4) E(η21) <∞
5) η1 is non-arithmetic random variable;
Then the process X(t) is ergodic.

3.2. Remark. Let’s now put ϕX(u) ≡ lim
t→∞

E {exp(iuX(t))}, u ∈ R. Using the basic

identity for the random walks (see, Feller W., [5], p.514) and 3.1 Lemma , we obtain the
following 3.3.

3.3. Lemma. Assume that assumptionts 3.1 are satisfied and the sequence of the random
variables {ζn} , n ≥ 1, which describes the discrete interference of chance has Weibull
distribution with the parameters (α, λ), α > 1, λ > 0. Then for u ∈ R \ {0}, the char-
acteristic function ϕX(u) of the ergodic distribution of the process X(t) can be expressed
by means of the characteristics of the pair (N(x), SN(x)) and the random variable η1 as
follows:

(3.1)

ϕX (u) =
eius

EN(ζ1) +K

∫ ∞
0

xα−1e−(λx)αeiuz
ϕSN(x)

(−u)− 1

ϕη (−u)− 1
dx

+
K eius

EN(ζ1) +K

∫ ∞
0

xα−1e−(λx)αeiuzϕSN (x)(−u)dx,

where EN(ζ1) = αλα
∫∞
0
xα−1e−(λx)αEN(x)dx; ϕSN(x)

(−u) = E exp(−iu SN(x));

ϕη(−u) = E exp(−iu η1); K = Eθ1/Eξ1.

4. Exact formulas for the first four moments of the ergodic dis-
tribution of the process X(t)

The aim of this section is to express the first four moments of the ergodic distribution
of the process X(t) by the characteristics of the boundary functional SN(x) and the
random variable η1. For this aim, introduce the following notations:

mk = E(ηk1 ), Mk(x) = E(SkN(x)), mk1 =
mk

m1
, Mk1(x) =

Mk(x)

M1(x)
, k = 1, 5, x ≥ 0;

E(ζn1Mk(ζ1)) = αλα
∫ ∞
0

xα+n−1e−(λx)αMk(x)dx, n = 0, 4, ek = E(ζk1 ), k = 1, 4;

and for the shortness of the expressions we put:

E(Xk) ≡ lim
t→∞

E((X(t))k), k = 1, 4 and X(t) ≡ X(t)− s.

We can now state the first main result of this section as follows.
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4.1. Theorem. Let the conditions of 3.3 be satisfied and also E |η1|5 <∞. Then the first

four moments of the ergodic distribution of the process X(t) exist and can be expressed by
means of the characteristics of the boundary functional SN(X) and the random variable
η1 as follows:

(4.1)

E(X) =
1

E(M1(ζ1)) +Km1

{
E(ζ1M1(ζ1)−

1

2
E(M2(ζ1))

+
1

2
(m21 − 2Km1)E(M1(ζ1)) +Km1e1

}
;

(4.2)

E(X
2
) =

1

E(M1(ζ1)) +Km1

{
E(ζ

2
1M1(ζ1)− E(ζ1M2(ζ1)) +

1

3
E(M3(ζ1))

+m21

(
E(ζ1M1(ζ1))−

1

2
E(M2(ζ1))

)
+Km1 (E(M2(ζ1))

−2E(ζ1(M1(ζ1))) + A1E(M1(ζ1)) + Km1e2} ;

(4.3)

E(X
3
) =

1

E(M1(ζ1)) +Km1

{
E(ζ

3
1M1(ζ1)−

3

2
E(ζ

2
1M2(ζ1)) + E(ζ1M3(ζ1))

−
1

4
E(M4(ζ1)) +

3

2
(m21 − 2Km1)

(
E(ζ

2
1M1(ζ1)− E(ζ1M2(ζ1))

)
+

1

2
(m21 − 2Km1)E(M3(ζ1)) + 3A1E(ζ1M1(ζ1))

−
3

2
A1E(M2(ζ1)) + 3A2E(M1(ζ1)) +Km1e3

}
;

E(X
4
) =

1

E(M1(ζ1)) +Km1

{
E(ζ

4
1M1(ζ1)− 2E(ζ

3
1M2(ζ1)) + 2E(ζ

2
1M3(ζ1)) − E(ζ1M4(ζ1))

+(m21 − 2Km1)

(
2E(ζ

3
1)M1(ζ1))− 3E(ζ

2
1M2(ζ1)) + 2E(ζ1M3(ζ1)) +

1

2
E(M4(ζ1))

)

+
1

5
E(M5(ζ1)) + 6A1

(
E(ζ

2
1M1(ζ1))− E(ζ1M2(ζ1)) +

1

3
E(M3(ζ1))

)
(4.4) + 6A2 (2E(ζ1M1(ζ1))− E(M2(ζ1))) + 3A3E(M1(ζ1)) +Km1e4} ;

where A1 = m21

2
; A2=

m2
21

2
− m31

3
; A3= m41

12
− m31m21

3
+

m3
21

4
;

A4 =
m4

21

4
− m31m

2
21

2
+
m41m21

6
+
m2

31

9
− m51

30
,

ek = E(ζk1 ), k = 1, 4;K = Eθ1/Eξ1.

Proof. Note that the conditions of 4.1 provide the existence and finiteness of first five
moments of SN(x) (see, Feller W., [5], p.514). And by using Taylor expansions for the
characteristic functions of the variables η1 and SN(x), the exact expressions (4.1)-(4.4)
for the first four ergodic moments of the process X(t) can be obtained. �

5. Third-order asymptotic expansions for the first four moments
of the ergodic distribution

In this section, we will obtain asymptotic expansions for the first four moments of the
ergodic distribution of the process X(t). For this aim, we will use the ladder variables of
the random walk Sn =

∑n
i=1 ηi, n ≥ 1, with initial state S0 = 0.

Let ν+1 = min{n ≥ 1 : Sn > 0}, χ+
1 = S

ν+1
=
∑ν+1
i=1 ηi.

Note that, the random variables ν+1 and χ+
1 are called the first strict ascending ladder

epoch and ladder height of the random walk {Sn}, n ≥ 0, respectively (see, Feller W., [5],
p.391).

Let’s give the following lemma:
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5.1. Lemma. Let g (x) (g : R+ → R) be a bounded function and lim
x→∞

g (x) = 0. Then

for any α > 1 the following asymptotic relation holds:

lim
λ→0

∫ ∞
0

e−tg(
t

1
α

λ
)dt = 0.

Proof. Under the conditions of 5.1, for any ε > 0, m(ε) > 0 exists such that for any

x ≥ m(ε), the inequality |g(x)| < ε holds. Choose b > 0, such that
∫ b
0
e−tdt < ε. The

function g (x) is bounded. Therefore, for any λ < b
1
α

m(ε)
, we have:∣∣∣∣∣

∫ ∞
0

e−tg(
t

1
α

λ
)dt

∣∣∣∣∣ ≤
∫ b

0

e−t

∣∣∣∣∣g(
t

1
α

λ
)

∣∣∣∣∣ dt+

∫ ∞
b

e−t

∣∣∣∣∣g(
t

1
α

λ
)

∣∣∣∣∣ dt ≤
≤ max

x≥0
|g(x)|

∫ b

0

e−tdt+ ε

∫ ∞
b

e−tdt ≤ εM + ε

∫ ∞
0

e−tdt = ε(M + 1),

where M = max
x≥0
|g(x)|.

Since M is finite and ε > 0 is arbitrary positive number, the proof of the 5.1 is
completed. �

Let’s give the following lemma, which proof is similar to proof of 5.1.

5.2. Lemma. Let g (x) be defined as in 5.1 and the function Rn(x) be defined as Rn(x) ≡
xng(x), n = −1, 0, 1, 2, .... Then for each α > 1, the following asymptotic relation is true,
when λ→ 0:∫ ∞

0

e−tRn(
t

1
α

λ
)dt = o(

1

λn
).

Now, we state the following auxiliary lemma, by using 5.1 in [7]:

5.3. Lemma. Let the condition E |η1|3 <∞ be satisfied. Then we can write the following
asymptotic expansions, as λ→ 0:

E (M1 (ζ1)) = E (ζ1) +
1

2
µ21 + o (λ) ,(5.1)

E (M2 (ζ1)) = E
(
ζ21
)

+ µ21E (ζ1) +
1

3
µ31 + o (1) ,(5.2)

E (M3 (ζ1)) = E
(
ζ31
)

+
3

2
µ21E

(
ζ21
)

+ µ31E (ζ1) + o

(
1

λ

)
,(5.3)

E (M4 (ζ1)) = E
(
ζ41
)

+ 2µ21E
(
ζ31
)

+ 2µ31E
(
ζ21
)

+ o

(
1

λ2

)
,(5.4)

E (M5 (ζ1)) = E
(
ζ51
)

+
5

2
µ21E

(
ζ41
)

+
10

3
µ31E

(
ζ31
)

+ o

(
1

λ3

)
.(5.5)

Proof. Using 5.2 in this paper and 5.1 in [7], we can obtained the asymptotic expansions
(5.1)-(5.5), as λ→ 0. �

Now, we can state the first main result of this section as follows:

5.4. Theorem. Let the conditions of 4.1 be satisfied. Then the following asymptotic
expansion can be written for the first four moments of the ergodic distribution of the
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process X(t), as λ→ 0:

E(X) = C21(α)
1

λ
+B11(α) +B12(α)λ+ o(λ),(5.6)

E(X
2
) = C31(α)

1

λ2
+B21(α)

1

λ
+B22(α) + o(1),(5.7)

E(X
3
) = C41(α)

1

λ3
+B31(α)

1

λ2
+B32(α)

1

λ
+ o(

1

λ
),(5.8)

E(X
4
) = C51(α)

1

λ4
+B41(α)

1

λ3
+B42(α)

1

λ2
+ o(

1

λ2
),(5.9)

where Ck(α) = Γ(1 + k/α); Ck1(α)= Ck(α)
kC1(α)

, k = 1, 5, Γ(α) =
∫∞
0
tα−1e−tdt,

B11(α) =
1

2

[
m21 −

C21(α)

C1(α)
(µ21 + 2Km1)

]
,

B12(α) =
C21(α)

4C2
1 (α)

(µ2
21 + 4µ21Km1 + 4K2m2

1)−

− 1

6C1(α)
(µ31 + 3µ21m1K + 3m2K),

B21(α) =
1

2

[
2C21(α)m21 −

C31(α)

C1(α)
(µ21 + 2Km1)

]
,

B22(α) =
C31(α)

4C2
1 (α)

(µ2
21 + 4K2m2

1 + 4µ21Km1)− C21(α)

2C1(α)
(m21µ21 − 2Km2)

+
3m2

21 − 2m31

6
,

B31(α) =
3C31(α)

2
m21 −

C41(α)

2C1(α)
(µ21 + 2Km1),

B32(α) =
C21(α)

2
(3m2

21 − 2m31) +
2C41(α)

3C2
1 (α)

(µ2
21 +

3

2
µ21Km1 +

3

2
K2m2

1)

− 3C31(α)

4C1(α)
(m21µ21 + 2Km2),

B41(α) = 6C41(α)m21 −
C51(α)

2C1(α)
(µ21 + 2Km1),

B42(α) = C31(α) (3m2
21 − 2m31 + 6m21µ21 − 3µ31 − 12Km1µ21)

+
C51(α)

4C2
1 (α)

(µ2
21 + 4µ21Km1 + 4K2m2

1)

− C41(α)

C1(α)
(3m21µ21 − 3µ2

21 − 6Km2 − 10Km1µ21 − 8K2m2
1).

Proof. Firstly, we obtain the asymptotic expansion for the expectation of the ergodic
distribution of the process X(t), as λ → 0. For this aim, the exact formula (4.1) was

obtained for E(X) in 4.1. For the shortness, we put

(5.10) E(X) = R(λ) J(λ),

where R(λ)= 1
E(M1(ζ1))+Km1

; J(λ) = J1(λ) + J2(λ);

J1(λ) = E (ζ1M1(ζ1))− 1

2
E (M2(ζ1)) ;

J2(λ) =
1

2
(m21 − 2Km1)E(M1(ζ1)) +Km1e1.
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By using Lemma 5.3 , we get the following expansion, as λ→ 0:

(5.11) J1(λ) =
Γ(1 + 2/α)

2λ2
− µ31

6
+ o(1).

Using 5.3 , we obtain the following asymptotic expansion for J2(λ), as λ→ 0:

(5.12) J2(λ) =
Γ(1 + 1/α)

2λ
m21 −

1

4
(m21 − 2Km1)µ21 + o(1).

By using asymptotic expansions (5.11) and (5.12), we get:

(5.13) J(λ) =
Γ(1 + 2/α)

λ2

[
1

2
+
m21Γ(1 + 1/α)

Γ(1 + 2/α)
λ+

+
1

Γ(1 + 2/α)

(
1

4
(m21 − 2Km1)µ21 −

1

6
µ31

)
λ2 + o(λ2)

]
.

Analogically, we calculate:

(5.14)

R(λ) =
λ

Γ((1 + 1/α)

[
1− µ21 + 2Km1

2Γ(1 + 1/α)
λ+

µ2
21 + 4µ21Km1 + 4K2m2

1

4Γ2(1 + 1/α)
λ2 + o(λ2)

]
.

Taking into account the asymptotic expansions (5.13) and (5.14), we obtain the following
asymptotic expansion, as λ→ 0:

R(λ) J(λ) =
Γ(1 + 2/α)

2Γ(1 + 1/α)

1

λ
− 1

2

[
m21 − (µ21 + 2Km1)

Γ(1 + 2/α)

Γ2(1 + 1/α)

]

+

[
(µ2

21 + 4µ21Km1 + 4K2m2
1)

Γ(1 + 2/α)

8Γ3(1 + 1/α)

(5.15) − (µ31 + 3µ21Km1 + 3Km2)
1

6Γ(1 + 1/α)

]
λ+ o(λ).

Substituting (5.15) in (5.10), we finally get the asymptotic expansion (5.6) for E(X),
as λ→ 0.

Now, we can analogically derive the asymptotic expansion for the second moment of
the ergodic distribution of the process X(t). For this aim, the exact formula (4.2) was

obtained for E(X
2
) in 4.1. For the shortness, we put

(5.16) E(X
2
) = R(λ) J ′(λ),

where J ′(λ) = J3(λ) + J4(λ); J3(λ) = E
(
ζ21M1(ζ1)

)
− E (ζ1M2(ζ1)) + 1

3
E(M3(ζ1));

J4(λ) = (m21 − 2Km1)E(ζ1M1(ζ1))− 1

2
(m21 − 2Km1)E(M2(ζ1))

+ A1E(M1(ζ1)) + Km1e2.

Using 5.3 , we obtain the following asymptotic expansion for J3(λ), as λ→ 0:

(5.17) J3(λ) =
1

3

Γ(1 + 3/α)

λ3
+ o(

1

λ
).

Taking 5.3 into account, we write the following asymptotic expansion for J4(λ), as λ→ 0:

(5.18) J4(λ) =
m21

2

Γ(1 + 2/α)

λ2
+A1

Γ(1 + 1/α)

λ
+
A1µ21

2
− (m21 −Km1)

6
µ31 + o(1).
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Using asymptotic expansions (5.17) and (5.18), we obtain the following asymptotic ex-
pansion for J ′(λ), as λ→ 0:

(5.19)

J ′(λ) =
Γ(1 + 3/α)

λ3

[
1

3
+
m21

2

Γ(1 + 2/α)

Γ(1 + 3/α)
λ+A1

Γ(1 + 1/α)

Γ(1 + 3/α)
λ2

+

(
A1µ21

2
− (m21 −Km1)

6
µ31

)
1

Γ(1 + 3/α)
α+ o(1)

]
.

Substituting asymptotic expansions (5.14) and (5.19) in the formula (5.16), and carry-
ing out the corresponding calculation, we finally get the asymptotic expansion (5.7) for

E(X
2
), as λ→ 0.

Analogically, we can calculate the asymptotic expansions for the third and fourth
moments of the ergodic distribution of the process X(t).
This completes the proof of 5.4. �

5.5. Corollary. Let the conditions of 5.4 are satisfied. Then the following asymptotic
expansion can be written for the variance of the ergodic distribution of the process X(t),
as λ→ 0:

V ar(X) =
[
C31(α)− C2

21(α)
] 1

λ2
+ [B21(α)− 2B11(α)C12(α)]

1

λ

+
[
B22(α)−B2

11(α)− 2C21(α)B12(α)
]

+ o(1).

5.6. Remark. Thus, we obtained the asymptotic expansions for the first four ergodic
moments of the process X(t). Using these moments, it is possible to calculate skewness

(γ3) and kurtosis (γ4) of the ergodic distribution of X(t):

γ3 =
E(X − a)3

σ3
, γ4 =

E(X − a)4

σ4
− 3 where a = E(X), σ2 = Var(X).

5.7. Corollary. Under the conditions of 5.4 , the following asymptotic expansions can be
written for the skewness (γ3) and kurtosis (γ4) of the ergodic distribution of the process

X(t), as λ→ 0:

γ3 =
C41(α)− 3C21(α)C31(α) + 2C3

21(α)

[C31(α)− C2
21(α)]

√
C31(α)− C2

21(α)
+O(λ),

γ4 =
C51(α) + 6C31(α)C2

21(α)− 4C21(α)C41(α)− 3C4
21(α)

[C31(α)− C2
21(α)]2

− 3 +O(λ).

6. Conclusions

In this study, some stationary characteristics of the process X (t) are investigated by
using analytical and asymptotic methods, whenever the sequence of random variables
{ζn} , n ≥ 1 which describes the discrete interference of chance has Weibull distribution
with parameters (α, λ), α > 1, λ > 0. The simple forms of the asymptotic expansions
allow us to observe how the initial random variables ξ1, η1, and ζ1 influence to the sta-
tionary characteristics of the process X(t).

Note that it is important to obtain the similar results for other types of discrete
interference of chance by using the methods introduced in this paper.

Acknowledgments

I would like to express my regards to Prof. Dr. Tahir KHANIYEV (TOBB Univer-
sity of Economics and Technology) and Asoc.Prof.Dr. Rovshan ALIYEV (Baku State



On the semi-Markovian random walk with delay and . . . 307

University, Department of Probability Theory and Mathematical Statistics) for their sup-
port and valuable advices. Additionally, I would like to thank the referee, Editor and
Associate Editor for their careful reading, valuable comments, and patience.

References

[1] Aliyev, R.T., Khaniyev, T.A and Kesemen, T. Asymptotic expansions for the moments of

a semi-Markovian random walk with gamma distributed interference of chance, Communi-

cations in Statistics-Theory and Methods, 39 (1), 130–143, 2010.
[2] Aliyev, R., Kucuk, Z. and Khaniyev, T. Three-term asymptotic expansions for the moments

of the random walk with triangular distributed interference of chance, Applied Mathematical

Modelling, 34 (11), 3599–3607, 2010.
[3] Anisimov, V.V. and Artalejo, J.R. Analysis of Markov multiserver retrial queues with neg-

ative arrivals, Queueing Systems: Theory and Applic, 39 (2/3), 157–182, 2001.

[4] Borovkov, A.A. Stochastic Process in Queueing Theory, (Springer, New York, 1976) .
[5] Feller, W. Introduction to Probability Theory and Its Appl. II,( New York, 1971 ).

[6] Gihman, I.I. and Skorohod, A.V. Theory of Stochastic Processes II, (Berlin, 1975 ).

[7] Khaniyev, T.A. and Mammadova, Z. On the stationary characteristics of the extended model
of type (s,S) with Gaussian distribution of summands, Journal of Statistical Computation

and Simulation,76 (10), 861–874 , 2006.
[8] Khaniyev, T.A., Kesemen, T., Aliyev, R.T. and Kokangul, A. Asymptotic expansions for

the moments of a semi-Markovian random walk with exponential distributed interference of

chance, Statistics & Probability Letters, 78 (6), 785–793, 2008.
[9] Lotov, V.I. On some boundary crossing problems for Gaussian random walks, The Annals

of Probability, 24 (4), 2154–2171, 1996.

[10] Rogozin, B.A. On the distribution of the first jump, Theory Probability and Its Applications,
9 (3), 498–545, 1964.


