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Abstract

The lognormal distribution is widely used in applications. Variable se-
lection is an important issue in all regression analysis and in this paper
we investigate simultaneous variable selection in the joint mean and
dispersion models of the lognormal distribution. We propose a unified
penalized likelihood method which can simultaneously select significant
variables in the mean and dispersion models. Furthermore, the pro-
posed variable selection method can simultaneously perform parameter
estimation and variable selection in the mean and dispersion models.
With appropriate selection of the tuning parameters, we establish the
consistency and the oracle property of the regularized estimators. Some
simulation studies and a real example are used to illustrate the proposed
method.
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1. Introduction

The lognormal distribution is widely used in geology, hydrology, biology, hylology,
industry, economics and so on, occurring in the literature, e.g., see Shimizu et.al. [15],
Crow and Shimizu [5], Limpert, Stahel and Abbt [12] and references therein, where the
basic process under consideration leads to a skewed distribution.

It is well known that efficient estimation of mean parameters in regression depends on a
correct modeling of the dispersion. The loss of efficiency may be substantial if the working
dispersion model deviates far from the underlying true dispersion model. Modeling of
the dispersion is also necessary to obtain correct standard errors and confidence intervals,
as well as for many other applications such as prediction, estimation of detection limits
or immunoassay (Carroll[3]; Carroll and Rupert[4]). In many studies, modeling the
dispersion will be of direct interest in its own right, to identify the sources of variability
in the observations [17].

Joint mean and dispersion models have been received a lot of attention in recent years.
For example, for joint mean and dispersion models of the normal distribution, Park [14]
proposed a log linear model for the variance parameter and described the Gaussian model
using a two stage process to estimate the parameters. Harvey [8] discussed maximum
likelihood (ML) estimation of the mean and variance effects and the subsequent likeli-
hood ratio test under general conditions. Aitkin [1] provided ML estimation for a joint
mean and variance model and applied it to the commonly cited Minitab tree data. Ver-
byla [20] estimated the parameters using restricted maximum likelihood (REML) and
provided leverage and influence diagnostics for ML and REML. It is common for the
observables to contain outliers. If the outliers are considered to be genuine then for their
accommodation, rather than deletion, Taylor and Verbyla [18] proposed joint modeling
of location and scale parameters of the t distribution. More general distributions from
the family of generalized linear models are considered by Smyth [16], Nelder and Lee
[13], Lee and Nelder[9], Smyth and Verbyla [17] and Wang and Zhang [21]. In these pa-
pers the mean and dispersion parameters of the distribution are estimated using double
generalized linear models.

It is common for the observables to have a skewed distribution. If present, the nor-
mality assumption of the error distribution for the model is questionable and estimates
of the parameters may be misleading. In this paper, the problem of interest is joint
modeling of mean and dispersion models of the lognormal distribution. We consider the
following joint mean and dispersion models of the lognormal distribution:

(1.1)



















yi ∼ LN(µi, σ
2
i )

log(ηi) = xT
i β

log(φi) = zTi γ

i = 1, 2, . . . , n,

where ηi = E(yi) = eµi+
1
2
σ2
i , Var(yi) = (eσ

2
i − 1)e2µi+σ2

i = φiη
2
i , φi = eσ

2
i − 1,

y = (y1, . . . , yn)
T is a vector of n independent responses, n is the sample size. xi =

(xi1, . . . , xip)
T and zi = (zi1, . . . , ziq)

T are observed covariates corresponding to yi,
β = (β1, . . . , βp)

T is a p × 1 vector of unknown parameters in the mean model, and
γ = (γ1, . . . , γq)

T is a q × 1 vector of unknown parameters in the dispersion model. zi
may contain some or all of the variables in xi and other variables not included in xi,
that is, the mean model and the dispersion model may incorporate different covariates,
or some of the same covariates, and may depend on common covariates in different ways.
Denote by x = (x1, . . . , xn)

T and z = (z1, . . . , zn)
T the covariate matrices.

We aim to remove the unnecessary explanatory variables from model (1.1).
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Variable selection is an important issue in all regression analysis. To the best of our
knowledge, most existing variable selection procedures are limited to selecting only the
mean explanation variables, e.g., Fan and Lv [7], Li, Peng and Zhu [10] and references
therein. However, little work has been done on selecting the dispersion explanation
variables. Wang and Zhang [21] proposed criterion EAIC for selection of only the mean
explanation variable based on extended quasi-likelihood, which is used in joint generalized
linear models with structured dispersions.

In this paper we aim to develop an efficient unified penalized likelihood method to
select important explanatory variables that make a significant contribution to the model
(1.1). We propose a unified penalized likelihood method which can simultaneously se-
lect significant variables in the mean and dispersion model. Furthermore, the proposed
variable selection method can simultaneously perform parameter estimation and variable
selection in the mean and dispersion model. With appropriate selection of the tuning
parameters, we establish the consistency and the oracle property of the regularized esti-
mators. Some simulations are carried out to assess the finite sample performance of the
proposed method. A real example is used to illustrate the proposed method.

The rest of this paper is organized as follows. In Section 2, we first propose a variable
selection method for model (1.1) via a penalized likelihood function. Then, we present
some theoretical properties of this procedure, including the consistency and the oracle
property of the regularized estimators. The standard error formula of the parameter
estimators and the choice of the tuning parameters are provided. In Section 3, based
on local quadratic approximations, we propose an iterative algorithm for finding the
penalized maximum likelihood estimators. In Section 4, some simulations and a real
example are used to illustrate the proposed method. Some concluding remarks are given
in Section 5. The technical proofs of all asymptotic results are provided in the Appendix.

2. Variable selection via penalized maximum likelihood

2.1. Penalized maximum likelihood. Many traditional variable selection criteria can
be considered as a penalized likelihood which balances modeling biases and estimation
variances (Fan and Li, [6]). Suppose that we have a random sample (yi, xi, zi), i =
1, 2, . . . , n, from model (1.1). Let ℓ(β, γ) denote the log-likelihood function. Then, similar
to Fan and Li [6], we define the penalized likelihood function

(2.1) L(β, γ) = ℓ(β, γ)− n

p
∑

j=1

pλ1j (|βj |)− n

q
∑

k=1

pλ2k
(|γk|),

where pλ1j (·) and pλ2k
(·) are pre-specified general penalty functions with regularization

parameters λ1j and λ2k which can be chosen by a data-driven criterion such as cross-
validation (CV) or generalized cross-validation (GCV, Fan and Li[6]; Tibshirani[19]),
respectively. In this paper, Section 4.1, we consider three penalty functions: SCAD (Fan
and Li[6]), LASSO (Tibshirani[19]) and Hard (Antoniadis[2]). In Section 2.4, we use BIC
to choose the tuning parameters. Note that the penalty functions and regularization
parameters are not necessarily the same for all j, k. For example, we wish to keep
some important variables in the final model and therefore do not want to penalize their
coefficients.

Let θ = (θ1, . . . , θs)
T = (β1, . . . , βp; γ1, . . . , γq)

T with s = p+ q. We use the following
penalized likelihood function

(2.2) L(θ) = ℓ(θ)− n

p
∑

j=1

pλ1j (|βj |)− n

q
∑

k=1

pλ2k
(|γk|),
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where ℓ(θ) = −
n
∑

i=1

ln yi − 1
2

n
∑

i=1

ln ln(ez
T
i γ + 1)− 1

2

n
∑

i=1

(ln yi−xT
i β+ 1

2
ln(e

zTi γ
+1))2

ln(e
zT
i

γ
+1)

.

The penalized maximum likelihood estimator of θ, denoted by θ̂, maximizes the func-
tion L(θ) in (2.2). With appropriate penalty functions, maximizing L(θ) with respect to θ
leads to certain parameter estimators vanishing from the initial models so that the corre-
sponding explanatory variables are automatically removed. Hence, through maximizing
L(θ) we achieve the goal of selecting important variables and obtaining the parameter es-
timators, simultaneously. In Section 3, we provide the technical details and an algorithm

to calculate the penalized maximum likelihood estimator θ̂.

2.2. Asymptotic properties. In this subsection, we consider the consistency and as-
ymptotic normality of the resulting penalized likelihood estimator. We first introduce
some notation. Let θ0 denote the true value of θ. Furthermore, let θ0 = (θ01, . . . , θ0s)

T =

(θ
(1)T
0 , θ

(2)T
0 )T . Without loss of generality, it is assumed that θ

(1)
0 consists of all nonzero

components of θ0 and that θ
(2)
0 = 0. In addition, we suppose the tuning parameters have

been rearranged with respect to the elements of θ0. Let s1 be the dimension of θ
(1)
0 . Let

an = max
1≤j≤s

{p′λn
(|θ0j |) : θ0j 6= 0},

bn = max
1≤j≤s

{|p′′λn
(|θ0j |)| : θ0j 6= 0},

where we write λ as λn to emphasize that λn depends the sample size n.

2.1. Theorem. Assume an = Op(n
− 1

2 ), bn → 0 and λn → 0 as n → ∞. λn is equal
to either λ1n or λ2n, depending on whether θ0j is a component of β0, γ0, (1 ≤ j ≤ s).

Under the conditions (C1)-(C2) in the Appendix, there exists a local maximizer θ̂n of the

penalized likelihood function L(θ) in (2.2) such that ‖θ̂−θ0‖ = Op(n
−1/2) with probability

tending to 1.

The proof is given in the Appendix. We now consider the asymptotic normality of θ̂n.
Let

An = diag(p′′λn
(|θ(1)01 |), . . . , p′′λn

(|θ(1)0s1
|)),

cn = (p′λn
(|θ(1)01 |)sgn(θ(1)01 ), . . . , p′λn

(|θ(1)0s1
|)sgn(θ(1)s1 ))T ,

where λn has the same definition as that in Theorem 2.1, and θ
(1)
0j is the jth component

of θ
(1)
0 (1 ≤ j ≤ s1). We denote the Fisher information matrix of θ by In(θ).

2.2. Theorem. (Oracle property) Assume that the penalty function pλn(t) satisfies

lim inf
n→∞

lim inf
t→ 0+

p′λn
(t)

λn
> 0

and Īn = In(θ0)/n converges to a finite and positive definite matrix I(θ0) as n → ∞.
Under the conditions of Theorem 2.1, if λn → 0 and

√
nλn → ∞ as n → ∞, then the√

n-consistent estimator θ̂n = ((θ̂
(1)
n )T , (θ̂

(2)
n )T )T in Theorem 2.1 must satisfy

(i) (Sparsity) θ̂
(2)
n = 0.

(ii) (Asymptotic normality)

√
n(Ī(1)n )−1/2(Ī(1)n +An){(θ̂(1)n − θ

(1)
0 ) + (Ī(1)n + An)

−1cn} L−→ Ns1(0, Is1),

where “
L−→” stands for convergence in distribution, and θ̂n = ((θ̂

(1)
n )T , (θ̂

(2)
n )T )T

is the penalized maximum likelihood estimator of θ. To emphasize its dependence

on the sample size n, we also denote it by θ̂n. Ī
(1)
n is the (s1 × s1) submatrix of
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Īn corresponding to nonzero components of θ
(1)
0 and Is1 is the (s1 × s1) identity

matrix.

2.3. Standard error formula of θ̂
(1)
n . As a consequence of Theorem 2.2, the asymp-

totic covariance matrix of θ̂
(1)
n is

(2.3) Cov(θ̂(1)n ) =
1

n
(Ī(1)n + An)

−1
Ī
(1)
n (Ī(1)n + An)

−1.

So the asymptotic standard error for θ̂
(1)
n is straightforward. However, Ī

(1)
n and An are

evaluated at the true value θ
(1)
0 , which is unknown. A natural choice is to evaluate Ī

(1)
n

and An at the estimator value θ̂
(1)
n so that the estimator of the asymptotic covariance

matrix of θ̂
(1)
n is obtained by (2.3).

Corresponding to the partition of θ0, we assume θ = ((θ(1))T , (θ(2))T )T . Set ℓ′(θ
(1)
0 ) =

[ ∂ℓ(θ)
∂θ(1)

]θ=θ0 and ℓ′′(θ
(1)
0 ) = [ ∂2ℓ(θ)

∂θ(1)∂θ(1)T
]θ=θ0 , where θ0 = ((θ(1))T , 0T )T . Also, let

Σλn(θ
(1)
0 ) = diag

{

p′λn1
(|θ(1)01 |)

|θ(1)01 |
, . . . ,

p′λns1
(|θ(1)0s1

|)
|θ(1)0s1

|

}

.

By using the observed information matrix to approximate the Fisher information matrix,

the covariance matrix of θ̂
(1)
n can be estimated by

Ĉov(θ̂(1)n ) = {ℓ′′(θ̂(1)n )− nΣλn (θ̂
(1)
n )}−1Ĉov{ℓ′(θ̂(1)n )}{ℓ′′(θ̂(1)n )− nΣλn (θ̂

(1)
n )}−1,

where Ĉov{ℓ′(θ̂(1)n )} is the covariance of ℓ′(θ(1)) evaluated at θ̂
(1)
n .

2.4. Selection of the tuning parameters. Many selection criteria, such as cross
validation (CV), generalized cross validation (GCV), AIC and BIC selection can be used
for tuning parameters. Wang et al. [22] suggested using the BIC for the SCAD estimator
in linear models and partially linear models, and proved its model selection consistency
property, i.e., the optimal parameter chosen by BIC can identify the true model with
probability tending to one. We will also use the BIC to select the optimal λ:

BIC(λ) = − 2

n
ℓ(θ̂) + dfλ × log(n)

n
,

where 0 ≤ dfλ ≤ s is simply the number of nonzero coefficients of θ̂. Except for a
constant,

ℓ(θ̂) = ℓ(β̂, γ̂)

= −
n
∑

i=1

ln yi − 1

2

n
∑

i=1

ln ln(ez
T
i γ̂ + 1)− 1

2

n
∑

i=1

(ln yi − xT
i β̂ + 1

2
ln(ez

T
i γ̂ + 1))2

ln(ez
T
i γ̂ + 1)

,

where β̂ and γ̂ are the penalized maximum likelihood estimators.

It is expected that the choice of λ1j and λ2k should be such that the tuning parameter
for a zero coefficient is larger than that for a nonzero coefficient. Thus we can simultane-
ously unbiasedly estimate the larger coefficient, and shrink the small coefficient towards
zero. Hence, in practice, we suggest

(i) λ1j = λ

|β̂0
j
|
, j = 1, . . . , p,

(ii) λ2k = λ
|γ̂0

k
|
, k = 1, . . . , q,

where β̂0
j and γ̂0

k are initial estimators of βj and γk respectively obtained by using unpe-
nalized maximum likelihood estimators of β and γ. 0 ≤ dfλ ≤ s is simply the number of

nonzero coefficients of θ̂.
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The tuning parameter can be obtained as

λ̂ = argmin
λ

BIC(λ).

From our simulation study, we found that this method works well.

3. Algorithm

Firstly, note that the first two derivatives of the log-likelihood function ℓ(θ) are con-
tinuous. For a given point θ0, the log-likelihood function can be approximated by

ℓ(θ) ≈ ℓ(θ0) +

[

∂ℓ(θ0)

∂θ

]T

(θ − θ0) +
1

2
(θ − θ0)

T

[

∂2ℓ(θ0)

∂θ∂θT

]

(θ − θ0).

Also, given an initial value θ0 we can approximate the penalty function pλ(θ) by a
quadratic function (Fan and Li, [6])

pλ(|θ|) ≈ pλ(|θ0|) +
1

2

p′λ(|θ0|)
|θ0|

(θ2 − θ20), for θ ≈ θ0.

Therefore, the penalized likelihood function (2.2) can be local approximated by

L(θ) ≈ ℓ(θ0)+

[

∂ℓ(θ0)

∂θ

]T

(θ−θ0)+
1

2
(θ−θ0)

T

[

∂2ℓ(θ0)

∂θ∂θT

]

(θ−θ0)− n

2
θTΣλ(θ0)θ,

where

Σλ(θ0) = diag

{

p′λ11
(|β01|)

|β01|
, . . . ,

p′λ1p
(|β0p|)

|β0p|
,
p′λ21

(|γ01|)
|γ01|

, . . . ,
p′λ2q

(|γ0q |)
|γ0q|

}

,

where

θ = (θ1, . . . , θs)
T = (β1, . . . , βp; γ1, . . . , γq)

T and

θ0 = (θ01, . . . , θ0s)
T = (β01, . . . , β0p; γ01, . . . , γ0q)

T .

So the quadratic maximization problem for L(θ) leads to a solution iterated by

θ1 ≈ θ0 +

{

∂2ℓ(θ0)

∂θ∂θT
− nΣλ(θ0)

}−1{

nΣλ(θ0)θ0 −
∂ℓ(θ0)

∂θ

}

.

Secondly, when the data satisfy the lognormal distribution, the log-likelihood function
ℓ(θ) can be written as

ℓ(θ) = −
n
∑

i=1

ln yi− 1

2

n
∑

i=1

ln ln(ez
T
i γ +1)− 1

2

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))2

ln(ez
T
i γ + 1)

.

Therefore, the resulting functions are

U(θ) =
∂ℓ(θ)

∂θ
= (UT

1 (β), UT
2 (γ))T ,

where

U1(β) =
∂ℓ

∂β
=

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))xi

ln(ez
T
i γ + 1)

,
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U2(γ) =
∂ℓ

∂γ
= −1

2

n
∑

i=1

ez
T
i γzi

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

− 1

2

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))ez

T
i γzi

(ez
T
i
γ + 1) ln(ez

T
i
γ + 1)

+
1

2

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))2ez

T
i γzi

(ez
T
i
γ + 1) ln2(ez

T
i
γ + 1)

,

and write

∂2ℓ(θ)

∂θ∂θT
=

(

∂2ℓ
∂β∂βT

∂2ℓ
∂β∂γT

∂2ℓ
∂γ∂βT

∂2ℓ
∂γ∂γT

)

,

where

∂2ℓ

∂β∂βT
= −

n
∑

i=1

xix
T
i

ln(ez
T
i γ + 1)

,

∂2ℓ

∂β∂γT
=

1

2

n
∑

i=1

ez
T
i γxiz

T
i

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

−
n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))ez

T
i γxiz

T
i

(ez
T
i γ + 1) ln2(ez

T
i γ + 1)

,

∂2ℓ

∂γ∂βT
=

1

2

n
∑

i=1

ez
T
i γzix

T
i

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

−
n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))ez

T
i γzix

T
i

(ez
T
i
γ + 1) ln2(ez

T
i
γ + 1)

,

∂2ℓ

∂γ∂γT
= −1

2

n
∑

i=1

ez
T
i γziz

T
i

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

+
1

2

n
∑

i=1

(

ez
T
i γ

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

)2

ziz
T
i

+
1

2

n
∑

i=1

[(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1)) + 1

2
](ez

T
i γ)2ziz

T
i

(ez
T
i γ + 1)2 ln(ez

T
i γ + 1)

− 1

2

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))ez

T
i γziz

T
i

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

+
1

2

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))2ez

T
i γziz

T
i

(ez
T
i γ + 1) ln2(ez

T
i γ + 1)

+
n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))(ez

T
i γ)2ziz

T
i

(ez
T
i
γ + 1)2 ln2(ez

T
i
γ + 1)

− 1

2

n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))2(ez

T
i γ)2ziz

T
i

(ez
T
i
γ + 1)2 ln2(ez

T
i
γ + 1)

−
n
∑

i=1

(ln yi − xT
i β + 1

2
ln(ez

T
i γ + 1))2(ez

T
i γ)2ziz

T
i

(ez
T
i
γ + 1)2 ln3(ez

T
i
γ + 1)

.
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The Fisher information matrix is

In(θ) = E

(

− ∂2ℓ(θ)

∂θ∂θT

)

=

(

I11 I12

I21 I22

)

,

where

I11 =

n
∑

i=1

xix
T
i

ln(ez
T
i γ + 1)

,

I12 = −1

2

n
∑

i=1

ez
T
i γxiz

T
i

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

,

I21 = −1

2

n
∑

i=1

ez
T
i γzix

T
i

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

,

I22 =
1

2

n
∑

i=1

(
ez

T
i γ

(ez
T
i γ + 1) ln(ez

T
i γ + 1)

)2ziz
T
i +

1

4

n
∑

i=1

(ez
T
i γ)2ziz

T
i

(ez
T
i γ + 1)2 ln(ez

T
i γ + 1)

.

By using the Fisher information matrix to approximate the observed information matrix,
we obtain the following iteration solution:

θ1 ≈ θ0 +

{

∂2ℓ(θ0)

∂θ∂θT
− nΣλ(θ0)

}−1{

nΣλ(θ0)θ0 −
∂ℓ(θ0)

∂θ

}

≈ θ0 + {In(θ0) + nΣλ(θ0)}−1{U(θ0)− nΣλ(θ0)θ0}
= {In(θ0) + nΣλ(θ0)}−1{U(θ0) + In(θ0)θ0}.

Finally, the following algorithm summarizes the computation of the penalized maximum
likelihood estimators of the parameters in model (1.1).

3.1. Algorithm. Step 1. Take the ordinary maximum likelihood estimators (without

penalty) β(0), γ(0) of β, γ as their initial values, that is, θ(0) = ((β(0))T , (γ(0))T )T .

Step 2. Given the current values β(m), γ(m), θ(m) = ((β(m))T , (γ(m))T )T update

θ(m+1) = {In(θ(m)) + nΣλ(θ
(m))}−1{U(θ(m)) + In(θ

(m))θ(m)}.

Step 3. Repeat Step 2 until a certain convergence criteria is satisfied.

4. Monte Carlo simulations and a real example

In this section, some simulation studies and a real example from Land Rent data are
used to illustrate the proposed method.

4.1. Simulation study. In this subsection, we conduct some Monte Carlo simulations
to evaluate the finite sample performance of the proposed method. As in Li, Peng and

Zhu [10], Li and Liang [11] and Zhao and Xue [24] the performance of the estimators β̂
and γ̂ will be assessed using the generalized mean square error (GMSE), defined as

GMSE(β̂) = (β̂ − β0)
TE(XXT )(β̂ − β0),

GMSE(γ̂) = (γ̂ − γ0)
TE(ZZT )(γ̂ − γ0).

We simulate data from model (1.1), that is,


















yi ∼ LN(µi, σ
2
i )

log(ηi) = xT
i β

log(φi) = zTi γ

i = 1, 2, . . . , n,
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where β0 = (1, 1, 0, 0, 1, 0, 0, 0)T and γ0 = (0.8, 0.8, 0, 0, 0.8, 0, 0, 0)T . To perform this sim-
ulation, we take the covariates xi ∼ U(−1, 1), zi ∼ U(−1, 1), i = 1, . . . , 8, yi is generated
according to model (1.1). In addition, we make 1000 simulation runs in each simulation.
The average number of estimated zero coefficients for parameter of the mean model and
dispersion model, with 1000 simulation runs, is reported in Table 1. In Table 1, the
column labeled “C” gives the average number of coefficients, of the true zero, correctly
set to zero, and the column label “IC” gives the average number of the true nonzeros
incorrectly set to zero. Furthermore, the column labeled GMSE gives the generalized

mean square errors of the estimator β̂ and γ̂.

We compare the performance of variable selections in model (1.1) with different sample
sizes and penalties.

Table 1. Comparisons with different penalties and sample sizes

Model n SCAD LASSO Hard

C IC GMSE C IC GMSE C IC GMSE

Mean 100 4.9910 0 0.0121 4.9420 0 0.0246 4.9990 0 0.0103

Model 200 5.0000 0 0.0052 4.9790 0 0.0116 5.0000 0 0.0045

300 5.0000 0 0.0029 4.9890 0 0.0078 5.0000 0 0.0027

Dispersion 100 4.8660 0.3850 0.3459 4.6300 0.2340 0.1753 4.8300 0.1010 0.3876

Model 200 4.9730 0.0470 0.1826 4.7700 0.0090 0.0696 4.8600 0.0040 0.1893

300 4.9920 0.0020 0.1569 4.8790 0 0.0390 4.9640 0 0.1572

From Table 1, we can make the following observations:

(1) We can see that the variable selection method based on SCAD, LASSO and Hard
become better in terms of model error and model complexity as the sample size
n increases.

(2) For the given penalty function, the performance of variable selection become

better and better as the sample size n increases. The GMSE of estimators β̂
and γ̂ also become smaller and smaller as the sample size n increases.

(3) For a given sample size n, the performances of both the SCAD and Hard proce-
dures are similar. Furthermore, the performances of both SCAD and Hard are
significantly better than that of LASSO.

(4) For a given penalty function and sample size n, the performance of variable
selection in the mean model are significantly better than that of the dispersion
model in the sense of model error and model complexity.

4.2. A real example. In this subsection, Land Rent data [23] are used to illustrate
the proposed method in Section 2. Land rent data reported a dataset about Y , the
average rent per acre planted to alfalfa, four predictors: X1, the average rent paid for all
tillable land; X2, the density of dairy cows (number per square mile); X3 the proportion
of farmland used pasture, and X4 = 1 if liming is required to grow alfalfa; 0, otherwise.
Alfalfa is a high protein crop that is suitable feed for dairy cows. It is thought that rent
for land planted to alfalfa relative to rent for other agriculture purposes would be higher
in areas with a high density of dairy cows and rents would be lower in counties where
liming is required, since that would mean additional expense. The unit of analysis was
a county in Minnesota, the 67 counties with appreciable rented farmland were included.
The data were collected to study the variation in rent paid for agricultural land planted
to alfalfa.
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For our purposes, we study the following joint mean and dispersion models of the
lognormal distribution.



















yi ∼ LN(µi, σ
2
i )

log(µi) = β0 +Xi1β1 +Xi2β2 +Xi3β3 +Xi4β4

log(φi) = γ0 +Xi1γ1 +Xi2γ2 +Xi3γ3 +Xi4γ4

i = 1, 2, . . . , 67.

We apply the variable selection procedure based on the SCAD and Hard proposed in
section 2 to the above model.

Table 2. Variable selection for Land rent data

Model Method Const. X1 X2 X3 X4

Mean Model SCAD 2.3409 0.0232 0.0057 0 0

Hard 2.3949 0.0239 0.0062 0 0

Dispersion Model SCAD 0 0 0 -2.5963 -0.5257

Hard 0 0 0 -2.2261 -2.0054

From Table 2, we notice that in this data example the SCAD and Hard based methods
perform very similarly in terms of the selected variables. We can see that our procedure
identified two nonzero regression coefficients β1 and β2 in the mean model, two nonzero
regression coefficients γ3 and γ4 in the dispersion model. This indicates that the X3

(the proportion of farmland used pasture) and X4 (X4 = 1, if liming is required to grow
alfalfa; 0, otherwise) have no significant impact on the mean of Y (the average rent per
acre planted to alfalfa), X1 (the average rent paid for all tillable land) and X2 (the density
of dairy cows, number per square mile) have no significant impact on the variance of Y
(the average rent per acre planted to alfalfa).

5. Conclusion and discussion

We have proposed a unified penalized likelihood method which can simultaneously
select significant variables and estimate regression coefficients in the mean model and
dispersion model. Furthermore, with appropriate selection of the tuning parameters, we
establish the consistency and the oracle property of the regularized estimators. Sim-
ulation studies and a real data example clearly show that the proposed method can
simultaneously select significant variables and estimate parameters in joint mean and
dispersion models of the lognormal distribution.

Similar ideas can be further extended to other exponential family models within the
join mean and dispersion framework. Due to the fact that exponential family distribution
contains the lognormal distribution as a special case, we are currently studying variable
selection in joint semiparametric modeling of mean and dispersion of the exponential
family distribution.

To conclude this article, we would like to discuss some interesting topics for future
study. The proposed method is valid for a fixed number of parameters. It would be
interesting to consider the case when the number of parameters goes to infinity.
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Appendix. Proofs of the theorems

For convenience and simplicity, let C denote a positive constant that may be different
at each appearance throughout this paper. Before we prove our main theorems, we list
some regularity conditions that are used in this paper.

To prove the theorems in the paper, we require the following regularity conditions:

(C1) The parameter space is compact and the true value θ0 is in the interior of the
parameter space.

(C2) The design matrices xi and zi in model (1.1) are all bounded, meaning that all
the elements of the matrices are bounded by a single finite real number.

Proof of Theorem 2.1. For any given ε > 0, we will prove there exists a sufficiently large
constant C such that

P
{

sup
||v||=C

L(θ0 + n− 1
2 v) < L(θ0)

}

≥ 1− ε.

Note that pλn(0) = 0 and pλn(·) > 0. Obviously, we have

L

(

θ0 + n− 1
2 v
)

− L(θ0)

= [ℓ(θ0 + n− 1
2 v)− n

s
∑

j=1

pλn(|θ0j + n− 1
2 vj |)]− [ℓ(θ0)− n

s
∑

j=1

pλn(|θ0j |)]

≤ [ℓ(θ0 + n− 1
2 v)− ℓ(θ0)]− n

s1
∑

j=1

[pλn(|θ0j + n− 1
2 vj |)− pλn(|θ0j |)]

= k1 + k2,

where

k1 = ℓ(θ0 + n− 1
2 v)− ℓ(θ0);

k2 = −n

s1
∑

j=1

[pλn(|θ0j + n− 1
2 vj |)− pλn(|θ0j |)].

We first consider k1. Using Taylor’s expansion, we know

k1 = [ℓ(θ0 + n− 1
2 v)− ℓ(θ0)]

= n− 1
2 vT ℓ′(θ0) +

1

2
n−1vT ℓ′′(θ∗)v

= k11 + k12,

where θ∗ lies between θ0 and θ0 + n− 1
2 v. Note that n− 1

2 ||ℓ′(θ0)|| = Op(1). By applying
the Cauchy-Schwartz inequality, we obtain

k11 = n− 1
2 vT ℓ′(θ0) ≤ n− 1

2 ||ℓ′(θ0)||||v|| = Op(1).

According to Chebyshev’s inequality, we know that for any ε > 0,

P

{

1

n
||ℓ′′(θ0)− Eℓ′′(θ0)|| ≥ ε

}

≤ 1

n2ε2
E

{

s
∑

j=1

s
∑

l=1

(

∂2ℓ(θ0)

∂θj∂θl
− E

∂2ℓ(θ0)

∂θj∂θl

)2
}

≤ Cs2

nε2
= o(1),
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which implies that 1
n
||ℓ′′(θ0)− Eℓ′′(θ0)|| = op(1), so

k12 =
1

2
n−1vT ℓ′′(θ∗)v =

1

2
vT [n−1ℓ′′(θ0)]v[1 + op(1)]

=
1

2
vT {n−1[ℓ′′(θ0)− Eℓ′′(θ0)− I(θ0)]}v[1 + op(1)]

= −1

2
vT I(θ0)v[1 + op(1)].

Therefore, we conclude that k12 dominates k11 uniformly in ||v|| = C if the constant C
is sufficiently large.

Next we study the term k2. It follows from Taylor’s expansion and the Cauchy-
Schwartz inequality that

k2 = −n

s1
∑

j=1

[pλn(|θ0j + n− 1
2 vj |)− pλn(|θ0j |)]

= −n

s1
∑

j=1

{n 1
2 p′λn

(|θ0j |)sgn(θ0j)vj + 1

2
p′′λn

(|θ0j |)v2j [1 +Op(1)]}

≤ √
s1n

1
2 ||v|| max

1≤j≤s
{p′λn

(|θj0|), θj0 6= 0}+ 1

2
||v||2 max

1≤j≤s
{|p′′λn

(|θj0|)| : θj0 6= 0}

=
√
s1n

1
2 ||v||an +

1

2
||v||2bn.

Since it is assumed that an = Op(n
− 1

2 ) and bn → 0, we conclude that k12 dominates k2 if
we choose a sufficiently large C. Therefore, for any given ε > 0, there exists a sufficiently
large constant C such that

P{ sup
||v||=C

L(θ0 + n− 1
2 v) < L(θ0)} ≥ 1− ε,

implying that there exists a local maximizer θ̂n such that θ̂n is a
√
n-consistent estimator

of θ0. The proof of Theorem 2.1 is completed. �

Proof of Theorem 2.2. We first prove part (i). From λmax → 0, it is easy to show

that an = 0 for large n. Secondly, we prove that any given θ(1) satisfying θ(1) − θ
(1)
0 =

Op(n
−1/2) and any constant C > 0, we have

L{((θ(1))T , 0T )T } = max
‖θ(1)‖≤Cn−1/2

L{((θ(1))T , (θ(2))T )T }.

In fact, for any θj(j = s1 + 1, . . . , s), using Taylor’s expansion we obtain

∂L(θ)

∂θj
=

∂ℓ(θ)

∂θj
− np′λn

(|θj |)sgn(θj)

=
∂ℓ(θ0)

∂θj
+

s
∑

l=1

∂2ℓ(θ∗)

∂θj∂θl
(θl − θ0l)− np′λn

(|θj |)sgn(θj),

where θ∗ is between θ and θ0. By a standard argument, we have

1

n

∂ℓ(θ0)

∂θj
= Op

(

n−1/2
)

and
1

n

{

∂2ℓ(θ0)

∂θj∂θl
− E(

∂2ℓ(θ0)

∂θj∂θl
)

}

= Op(1).

Note that ‖θ̂ − θ0‖ = Op(n
−1/2). We then have

∂L(θ)

∂θj
= −nλn

{

λ−1
n p′λn

(|θj |)sgn(θj) +Op

(

λ−1
n n−1/2)}.
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According to the assumption in Theorem 2.2, we obtain

lim inf
n→∞

lim inf
θ→o+

λ−1
n p′λn

(θ) > 0 and λ−1
n n−1/2 → 0,

so that

∂L(θ)

∂θj
< 0, for 0 < θj < Cn−1/2

and

∂L(θ)

∂θj
> 0, for − Cn−1/2 < θj < 0.

Therefore, L(θ) achieve its maximum at θ = ((θ(1))T , 0T )T and the first part of Theo-
rem 2.2 has been proved.

Secondly, we discuss the asymptotic normality of θ̂
(1)
n . From Theorem 2.1 and the first

part of Theorem 2.2, there exists a penalized maximum likelihood estimator θ̂
(1)
n that is

the
√
n-consistent local maximizer of the function L

{

((θ(1))T , 0T )T
}

. The estimator θ̂
(1)
n

must satisfy

0 =
∂L(θ)

∂θj
|θ=(θ̂(1))T )T ,0T )T − np′λn

(|θ̂(1)nj )|)sgn(θ̂
(1)
nj )

=
∂ℓ(θ0)

∂θj
+

s1
∑

l=1

{∂2ℓ(θ0)

∂θj∂θl
+Op(1)

}

(

θ̂
(1)
nl − θ

(1)
0l

)

− np′λn

(

|θ(1)0j |
)

sgn
(

θ̂
(1)
0j

)

− n
{

p′′λn
(|θ(1)0j |) +Op(1)

}(

θ̂
(1)
nj − θ

(1)
0j

)

.

In other words, we have
{

∂2ℓ(θ0)

∂θ(1)∂(θ(1))T
+ nAn +Op(1)

}

(

θ̂(1)n − θ
(1)
0

)

+ cn =
∂ℓ(θ0)

∂θ(1)
.

Using the Liapounov form of the multivariate central limit theorem, we obtain

1√
n

∂ℓ(θ0)

∂θ(1)
L−→ N(0, I(1)).

Note that

1

n

{

∂2ℓ(θ0)

∂θ(1)∂(θ(1))T
− E

(

∂2ℓ(θ0)

∂θ(1)∂(θ(1))T

)}

= Op(1),

so it follows immediately by using Slustsky’s theorem that
√
n
(

Ī
(1)
n

)−1/2(
Ī
(1)
n +An

){(

θ̂(1)n − θ
(1)
0

)

+
(

Ī
(1)
n + An

)−1
cn
}

L−→ Ns1

(

0, Is1
)

.

The second part of Theorem 2.2 has been proved. �
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